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Voice anonymization can be a promising approach
to collecting and sharing more voice data while protecting the privacy of patients.

INTRO: 
• We aim to explore the potential of utilizing 

privacy-preserving techniques for safely 
collecting and sharing human voice data from 
patients for automatic assessment of voice 
disorders. 

MOTIVATION: 
• Sharing voice data from patients with voice 

disorders/diseases is beneficial.
• Lack of voice data sharing in clinical settings 

due to privacy concerns.
• Anonymization techniques for human voice data 

could be used in this case.

METHODS
1. Evaluate the privacy risks of sharing voice data 

from patients
2. Examine privacy-enhancing techniques for voice 

data sharing
3. Datasets: (1) LibriSpeech dataset: 363 hours, 

921 speakers. (2) Saarbruecken Voice 
Database: 2000 German-speaking individuals. 
(3) A dataset from Eye, Ear, Nose and Throat 
Hospital of Fudan University: 461 people.

4. Illustration of the x-vector selection step in 
the anonymization process

METHODS – System Overview

An overview of the privacy-preserving voice data sharing system
GAN: generative adversarial net. DNN: deep neural net. DSP: digital signal processing.

METHODS – Anonymization Model

A DNN-based anonymization model for human voice data
F0: fundamental frequency. ASR: automatic speech recognition. AM: acoustic 
model. BN: bottleneck. X-vector: DNN embeddings. DNN: deep neural 
network. GAN: generative adversarial network. NSF: neural source-filter.

RESULTS – Anonymization 

METHODS – Learning Model 

A learning model for dysphonia detection CNN: convolutional neural net. MFCC: 
Mel-frequency cepstral coefficients. 

RESULTS – Learning

Performance evaluation of 
dysphonia detectionResults for resemblance (WER) 

and privacy (EER) metrics
WER, word error rate. EER: equal error rate.
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