Privacy-preserving collection and sharing of unbiased human voice data for BZAI

automatic assessment of voice disorders
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INTRO:

 We aim to explore the potential of utilizing
privacy-preserving techniques for safely
collecting and sharing human voice data from
patients for automatic assessment of voice
disorders.

MOTIVATION:

« Sharing voice data from patients with voice
disorders/diseases is beneficial.

» Lack of voice data sharing in clinical settings
due to privacy concerns.

« Anonymization techniques for human voice data
could be used in this case.

METHODS

1. Evaluate the privacy risks of sharing voice data
from patients

2. Examine privacy-enhancing techniques for voice
data sharing

3. Datasets: (1) LibriSpeech dataset: 363 hours,
921 speakers. (2) Saarbruecken Voice
Database: 2000 German-speaking individuals.
(3) A dataset from Eye, Ear, Nose and Throat
Hospital of Fudan University: 461 people.

4. lllustration of the x-vector selection step in
the anonymization process
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Voice anonymization can be a promising approach
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METHODS - System Overview
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An overview of the privacy-preserving voice data sharing system

GAN: generative adversarial net. DNN: deep neural net. DSP: digital signal processing.
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A DNN-based anonymization model for human voice data

FO: fundamental frequency. ASR: automatic speech recognition. AM: acoustic
model. BN: bottleneck. X-vector: DNN embeddings. DNN: deep neural
network. GAN: generative adversarial network. NSF: neural source-filter.

METHODS - Learning Model
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A learning model for dysphonia detection CNN: convolutional neural net. MFCC:
Mel-frequency cepstral coefficients.
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WER, word error rate. EER: equal error rate. REFERENCES
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