

Medical Data Privacy and Ethics in the Age of Artificial Intelligence

Lecture 7: Transparency and Interpretability Techniques

Zhiyu Wan, PhD (wanzhy@shanghaitech.edu.cn)

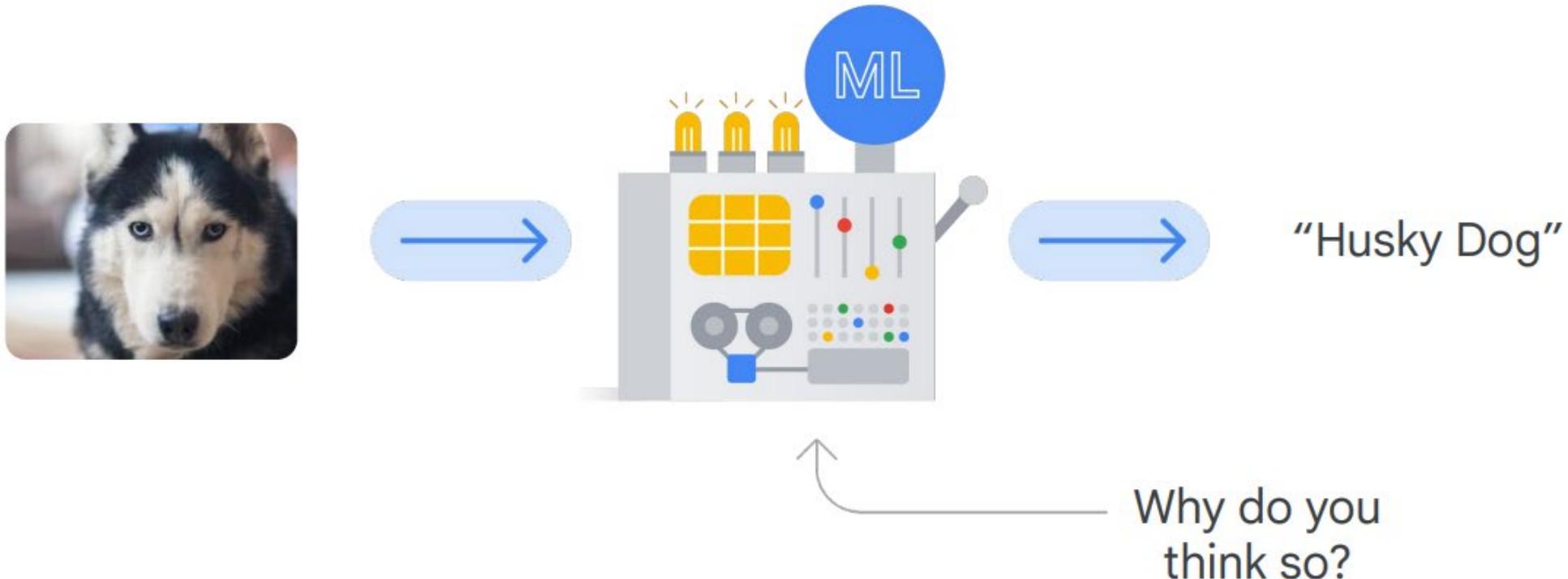
Assistant Professor of Biomedical Engineering

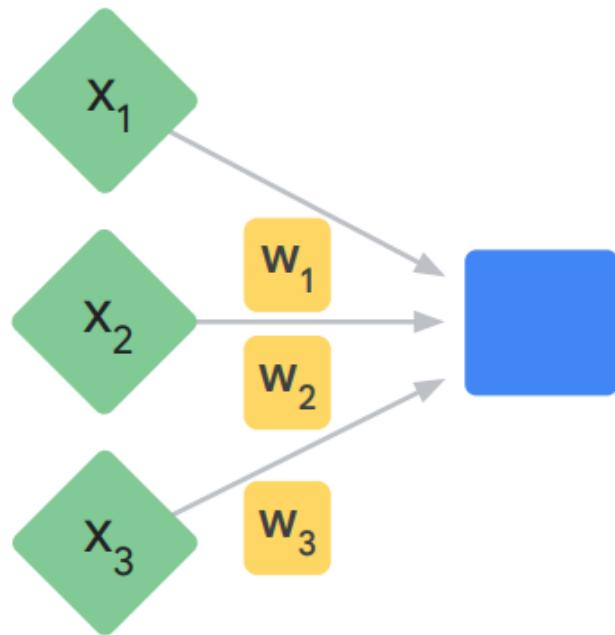
ShanghaiTech University

March 19, 2025

Learning Objectives of This Lecture

- Understand 4 interpretability techniques
- Know 2 interpretability tools

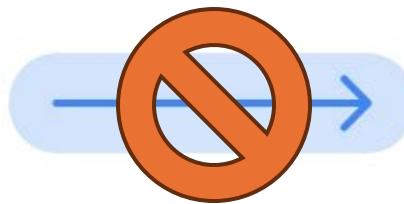




Coefficients represent
relative feature importance

$$\hat{y} = w_1 x_1 + w_2 x_2 + w_3 x_3 \dots$$

Feature importance



Feature importance

[Deep] Neural Networks

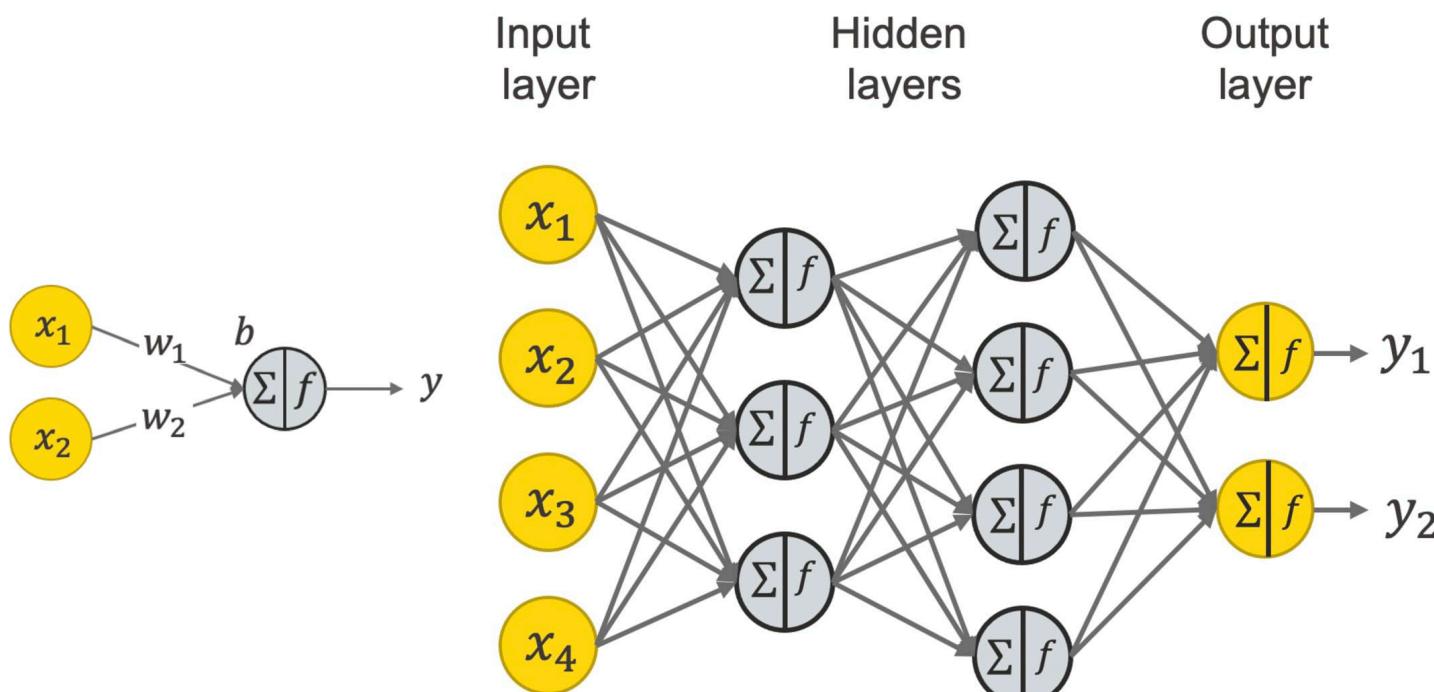
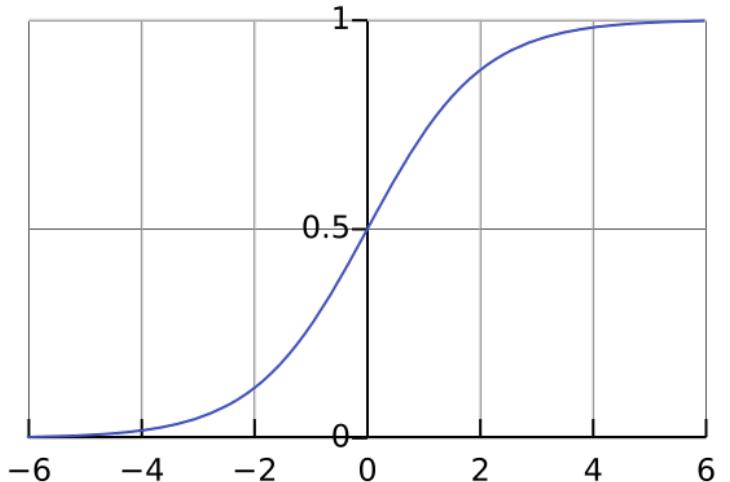


Figure 1. The standard logistic function

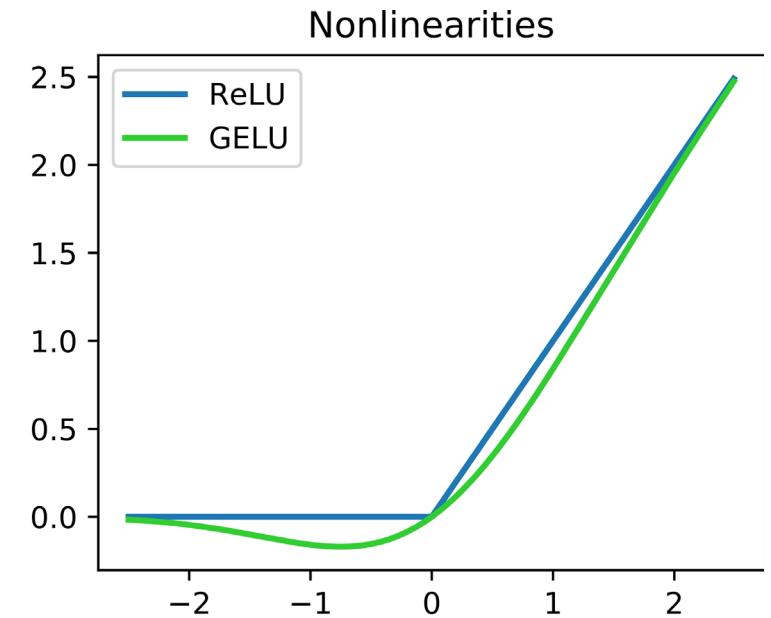
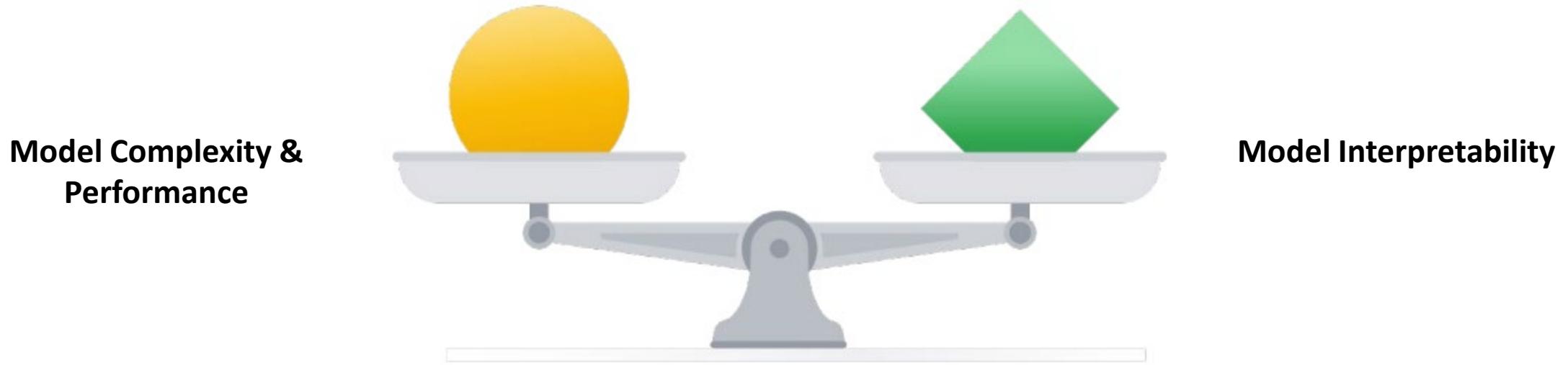


Figure 2. Rectified linear unit (ReLU) and Gaussian Error Linear Unit (GELU)

Complexity – Interpretability Tradeoff



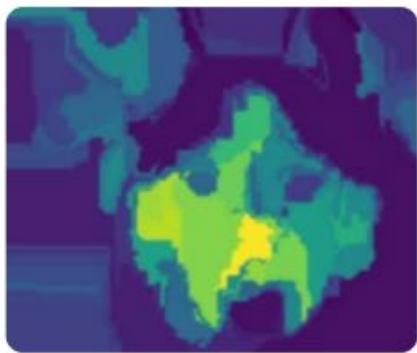
How to explain an ML model

- **Intrinsic**
 - Linear regression, Decision tree, Bayesian networks
- **Post-hoc (after training)**
 - Local (individual predictions)
 - Model agnostic (**Shapley values, LIME**)
 - Model specific (Integrated Gradients, SmoothGrad, XRAI, Grad-CAM)
 - Global (entire model)
 - Model agnostic (**Partial Dependence Plots, Permutation Importance**)
 - Hybrid (**SHAP**, Integrated Gradients)
 - Model specific (Tree Gain-based Importance, TCAV)

Why do you classify this image as a “Husky Dog”?

Which feature do you prioritize most in general?

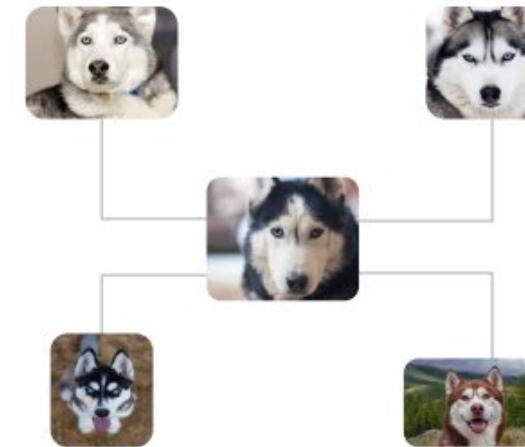
Feature-based Explanation



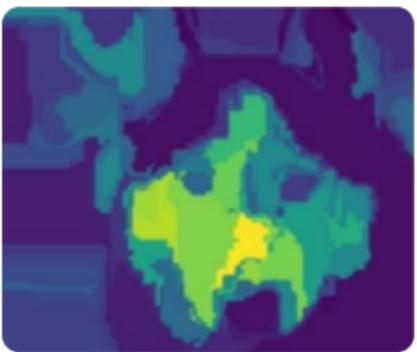
Concept-based Explanation

Erect Ear: 0.47
White Fur: 0.23
Long Nose: 0.64
Well-furred Tail: 0.12
...

Example-based Explanation



Images



Class: Husky Dog

Tabular

Name	Future value	Attrib.
distance	1395.51	-2.44478
temp	16.168	-0.12629
dew_point	7.83396	0.0110318
prcp	0.03	-0.00134132



Prediction: 56.7

Text

The cake tastes delicious!

Sentiment score: 0.9

Image classification

Classification / regression

Text classification

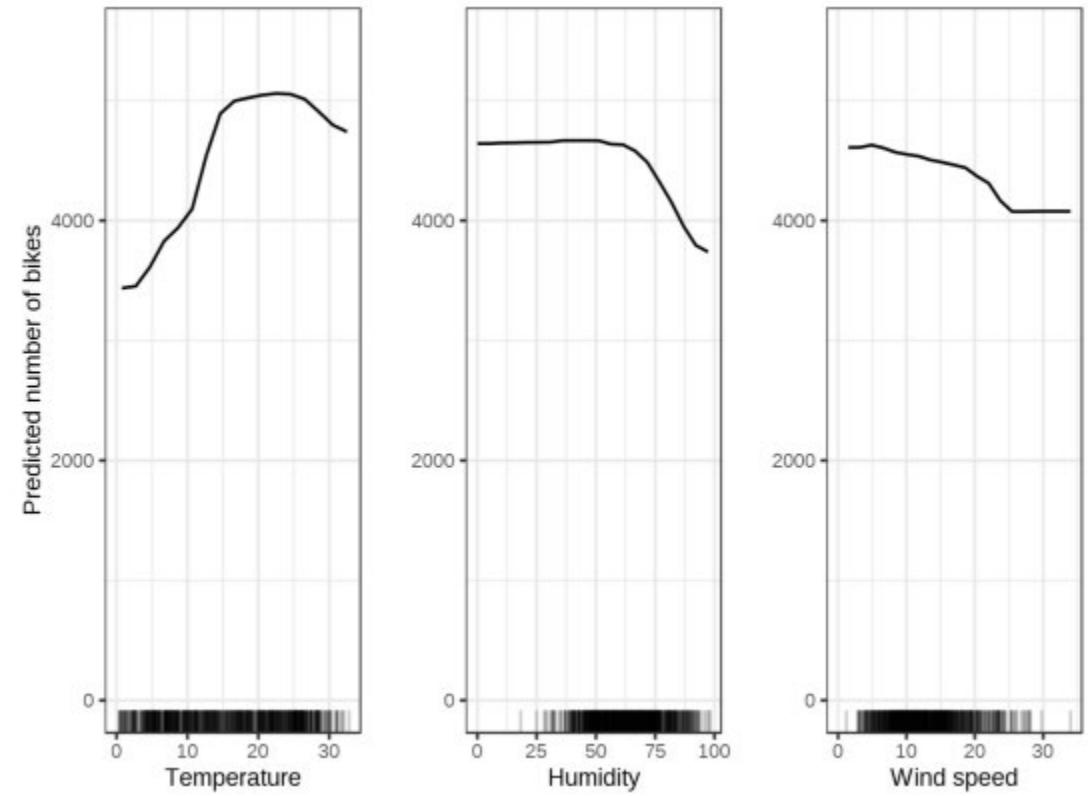
Permutation Feature Importance

- **Post-hoc, global, model agnostic**
 - Randomly Shuffles values of a single feature and observes the resulting change in the model's error rate. The higher the increase in error, the more important the feature is considered to be.
 - It can be intuitive and is easy to implement, but sometimes it can be misleading.

Height at age 20 (cm)	Height at age 10 (cm)	...	Socks owned at age 10
182	155	...	20
175	147	...	10
...
156	142	...	8
153	130	...	24

Partial Dependence Plots (PDPs)

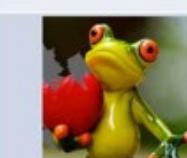
- **Post-hoc, global, model agnostic**
 - Used to visualize the relationship between a model's predictions and the values of specific input features
 - Show how the model's predictions change as we vary the values of one input feature while holding all other features constant
 - **They can help identify important features, detect nonlinear relationships, and uncover potential biases in the model**



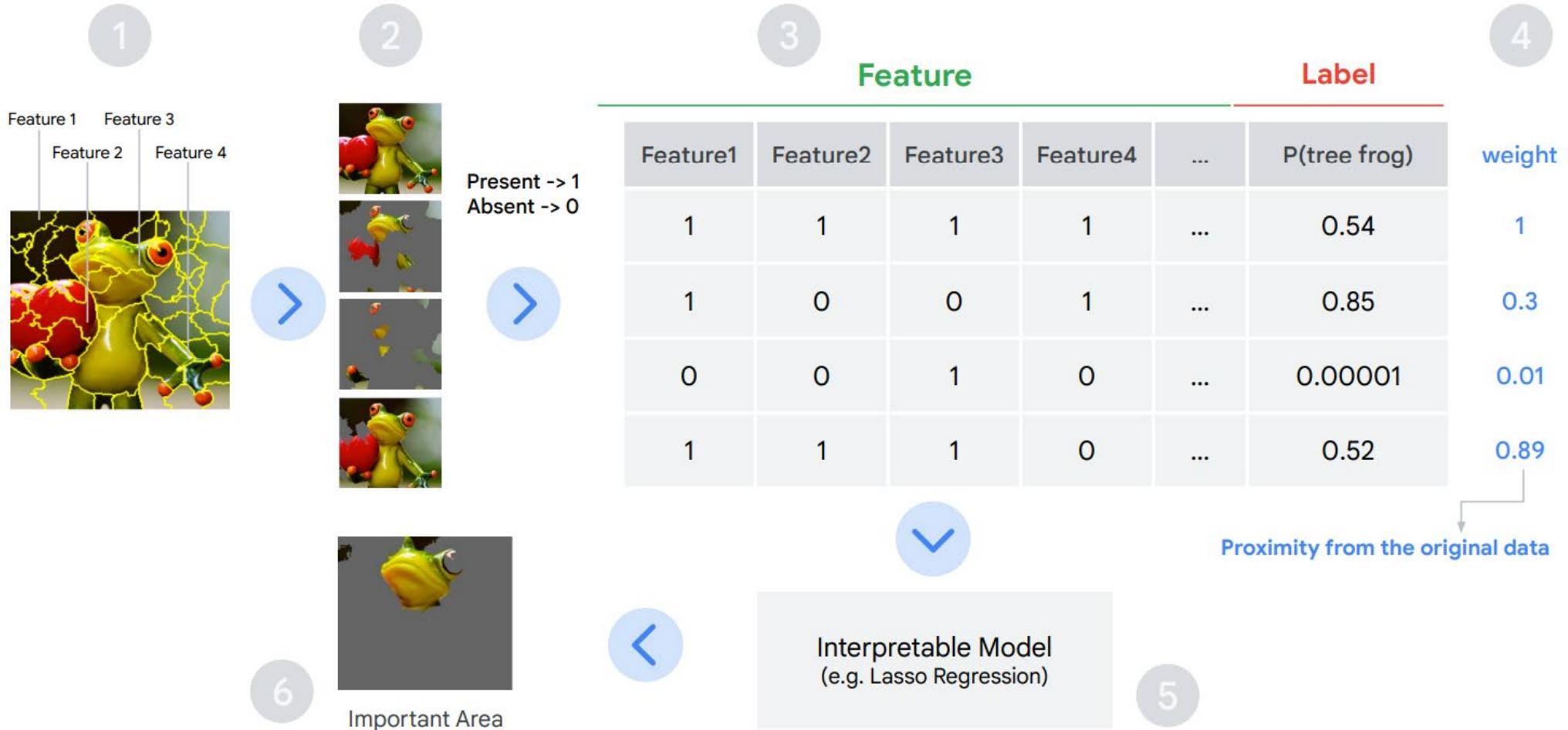
Local Interpretable Model-Agnostic Explanations (LIME)

- Post-hoc, local, model agnostic
- Creates an explanation by approximating the underlying model locally, with an interpretable one.
- A linear model or a decision tree is often used.

Original Image
 $P(\text{tree frog})=0.54$

Perturbed Instances	$P(\text{tree frog})$
	0.85
	0.00001
	0.52

Sources: Macro Tulio Ribeiro



Perturbation procedure varies according to the data type

- Images
 - Create pixel groups (super-pixels)
 - Replace super-pixels with gray values
- Text
 - Replace word tokens with a magic token (e.g., UNK)
- Tabular
 - Sample from a normal distribution with mean and standard deviation taken from the feature

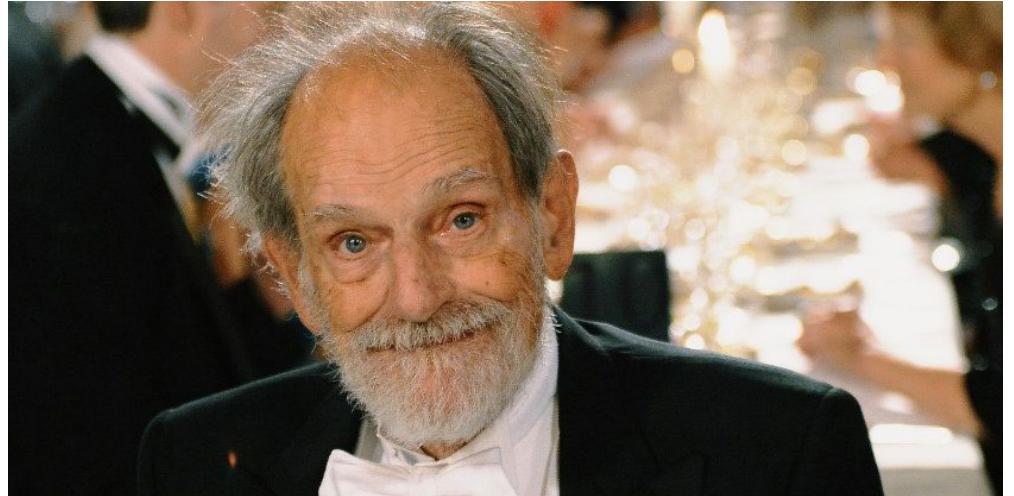
LIME proposes a [UNK] implementation of local [UNK] model based Explanation.

Temp	Humid	Wind
32	52	19

32	74	28
	▼	

Shapley values

- **Post-hoc, local, model agnostic**
- Come from an area of mathematics known as **cooperative game theory**
- Tries to quantify the contribution of each player in a cooperative situation



Lloyd Shapley won 2012 Nobel Memorial Prize in Economic Sciences

Split based on individual contributions

Ne, Zha

Ao, Bing

Tai, Yi

1000

Step 1: Do multiple trials in different team set up

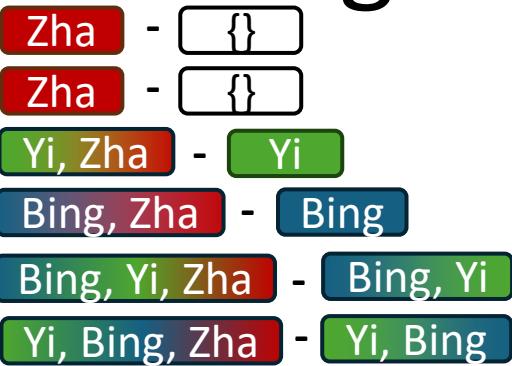
	Team	Result
Case 1	{}	0
Case 2	{Zha}	400
Case 3	{Bing}	350
Case 4	{Yi}	300
Case 5	{Zha, Bing}	750
Case 6	{Zha, Yi}	700
Case 7	{Bing, Yi}	600
Case 8	{Zha, Bing, Yi}	1000

Step 2: Arrange trails as paths

Step 3: Calculate average contributions

Ne, Zha

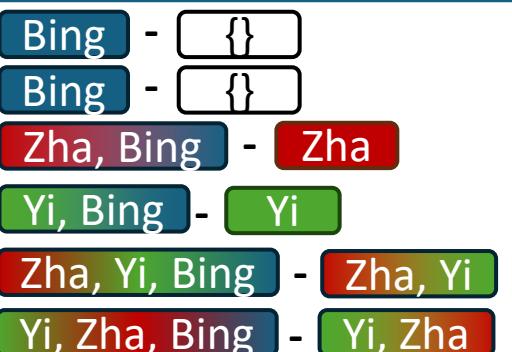
$$\text{Avg}(\quad) = 400$$



(Average) Shapley Values

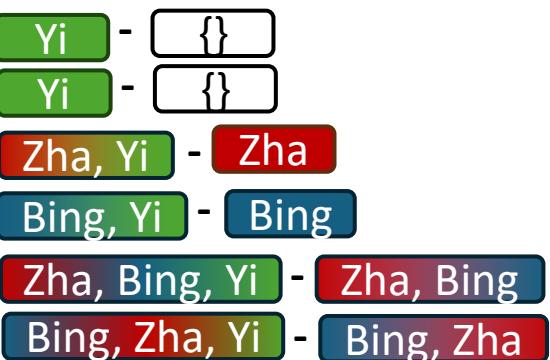
Ao, Bing

$$\text{Avg}(\quad) = 325$$



Tai, Yi

$$\text{Avg}(\quad) = 275$$



Additivity!

What happens if we have 1000 people?

- Number of cases = 2 to the number of features ($8=2^3$)
- Approximation algorithms of Shapley values
 - Sampled Shapley
 - Approximate Shapley value by sampling (not calculating all the cases) permutations
 - Kernel SHAP
 - Slightly faster than Sampled Shapley, but it assumes the independence of features.
 - Tree SHAP
 - Faster approximation algorithm, but it can only be applied to Tree-based models. Hence this technique is model-specific

Interpretability tools

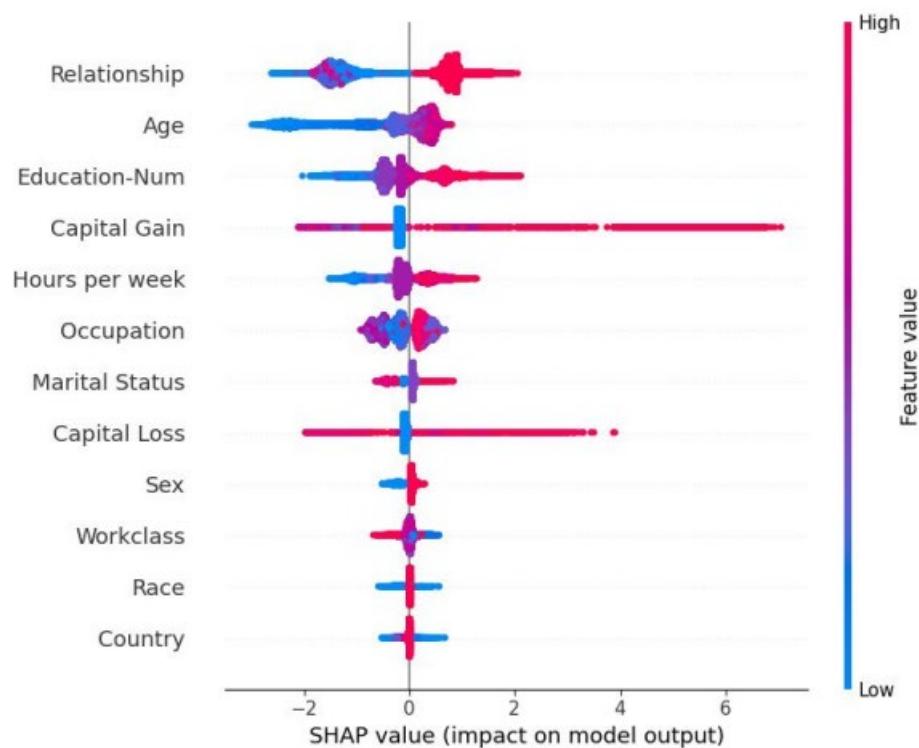
- SHAP Python library
- Learning Interpretability Tool (LIT)

SHAP Python Library

- It provides popular implementations of approximate Shapley values, including Sampled Shapley, Kernel SHAP, Tree SHAP, etc.
- It has limited applications to domains such as images.
- Code Sample:

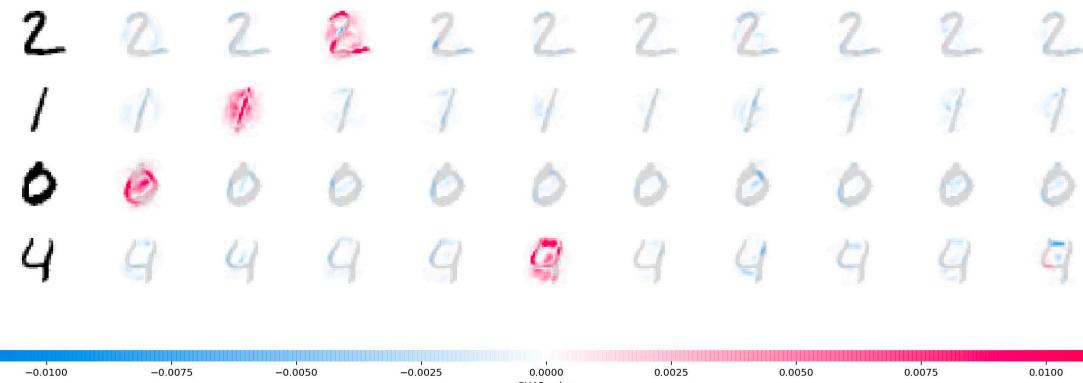
```
import shap  
...  
explainer =  
shap.TreeExplainer(model)  
shap_values =  
explainer.shap_values(X)  
shap.summary_plot(shap_values, X)
```

Visualization Example



SHAP for images (Examples)

- DeepExplainer



- GradientExplainer

SHAP applied to ImageNet

<https://github.com/shap/>

Learning Interpretability Tool (LIT)

- It mainly supports Natural Language Processing (NLP) with some preliminary support for tabular and image data.
 - What kind of examples does my model perform poorly on?
 - Why did my model make this prediction? Does the model properly focus on important features, instead of obviously unimportant features like image background?
 - Does my model behave consistently if I change things like textual style, verb tense, or pronoun gender?
 - And does this method relate to counterfactual analysis in AI fairness and bias?

LIT

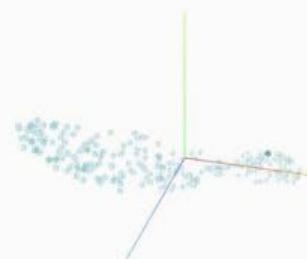
Select datapoint

sst2-tiny sst2-base sst_dev simple default

< 1 of 250 datapoints >

Embeddings

Projector: UMAP Embedding: sst2-tiny:cls_emb Label by: sentence



None

Data Table

Columns Show selected Show generated Reset view Select filtered

index	sentence	label
0	it's a charming and often affecting journey .	1
1	unflinchingly bleak and desperate	0
2	allows us to hope that nolan is poised to embark a major career as a commercial yet inventive filmmaker .	1
3	the acting , costumes , music , cinematography and sound are all astounding given the production 's austere locales .	1
4	it's slow - very , very slow .	0
5	although laced with humor and a few fanciful touches , the film is a refreshingly serious look at young women .	1
6	a sometimes tedious film .	0
7	or doing last year 's taxes with your ex-wife .	0

< Page 1 of 25 >

Datapoint Editor

*sentence TextSegment
the acting , costumes , music , cinematography and sound are all astounding given the production 's austere locales .

label CategoryLabel

Predictions Explanations Salience Clustering Metrics Counterfactuals TCAV

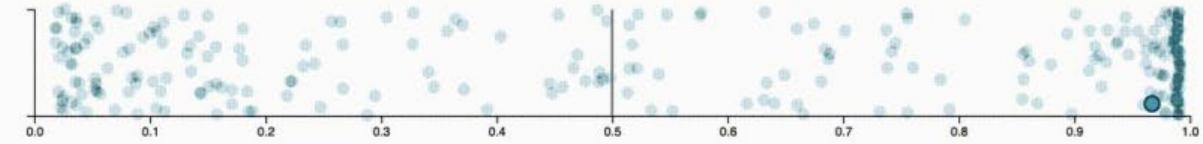
Classification Results

Class	Score
0	0.033
1	0.967

P = The predicted label , T = The ground truth label

Scalars

sst2-tiny:probas:1 - Value: 0.967 Threshold:



None

<https://pair-code.github.io/lit/>
<https://github.com/PAIR-code/lit>

Take-away messages

- Understood 4 interpretability techniques
 - Permutation Feature Importance
 - Partial Dependence Plots (PDPs)
 - Local Interpretable Model-Agnostic Explanations (LIME)
 - **Shapley Values**
 - SHAP (SHapley Additive exPlanations)
- Knew 2 interpretability tools
 - SHAP Python Library
 - Learning Interpretability Tool (LIT)

Readings for the Next Week

- **None**
- Optional
 - None

Feedback Survey

- One thing you learned or felt was valuable from today's class & reading
- Muddiest point: what, if anything, feels unclear, confusing or “muddy”
- <https://www.wjx.cn/vm/hX0mlro.aspx>

BME2133 Class Feedback Survey

