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Learning Objectives of This Lecture

• Understand 4 interpretability techniques
• Know 2 interpretability tools
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https://www.coursera.org/learn/responsible-ai-for-developers-interpretabilitytransparency
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[Deep] Neural Networks
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Figure 1. The standard logistic function

Figure 2. Rectified linear unit (ReLU) and 
Gaussian Error Linear Unit (GELU) 



Complexity – Interpretability Tradeoff
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Model Complexity & 
Performance

Model Interpretability



How to explain an ML model

• Intrinsic
• Linear regression, Decision tree, Bayesian networks

• Post-hoc (after training)
• Local (individual predictions)

• Model agnostic (Shapley values, LIME)
• Model specific (Integrated Gradients, SmoothGrad, XRAI, Grad-CAM)

• Global (entire model)
• Model agnostic (Partial Dependence Plots, Permutation Importance)
• Hybrid (SHAP, Integrated Gradients)
• Model specific (Tree Gain-based Importance, TCAV)
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Which
feature do you 

prioritize most in 
general?

Why do you classify 
this image as a 
“Husky Dog”?
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Permutation Feature Importance

• Post-hoc, global, model agnostic
• Randomly Shuffles values of a single 

feature and observes the resulting 
change in the model’s error rate. The 
higher the increase in error, the more 
important the feature is considered to 
be.

• It can be intuitive and is easy to 
implement, but sometimes it can be 
misleading.
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Height at age 
20 (cm)

Height at age 
10 (cm)

… Socks owned 
at age 10

182 155 … 20

175 147 … 10

… … … …

156 142 … 8

153 130 … 24



Partial Dependence Plots (PDPs)

• Post-hoc, global, model agnostic
• Used to visualize the relationship 

between a model’s predictions and 
the values of specific input features

• Show how the model’s predictions 
change as we vary the values of 
one input feature while holding all 
other features constant

• They can help identify important 
features, detect nonlinear 
relationships, and uncover 
potential biases in the model
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Local Interpretable Model-Agnostic 
Explanations (LIME)
• Post-hoc, local, model agnostic
• Creates an explanation by 

approximating the underlying 
model locally, with an 
interpretable one.

• A linear model or a decision 
tree is often used.
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Sources: Macro Tulio Ribeiro
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Perturbation procedure varies according to 
the data type
• Images

• Create pixel groups (super-pixels)
• Replace super-pixels with gray values

• Text
• Replace word tokens with a magic token 

(e.g., UNK)

• Tabular
• Sample from a normal distribution with 

mean and standard deviation taken 
from the feature
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Shapley values

• Post-hoc, local, model agnostic
• Come from an area of mathematics 

known as cooperative game theory
• Tries to quantify the contribution of 

each player in a cooperative situation
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Lloyd Shapley won 2012 Nobel Memorial Prize 
in Economic Sciences



Split based on individual contributions
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Ne, Zha

Ao, Bing

Tai, Yi

1000



Step 1: Do multiple trails in different team 
set up

Team Result

Case 1 {} 0

Case 2 {Zha} 400

Case 3 {Bing} 350

Case 4 {Yi} 300

Case 5 {Zha, Bing} 750

Case 6 {Zha, Yi} 700

Case 7 {Bing, Yi} 600

Case 8 {Zha, Bing, Yi} 1000
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Step 2: Arrange trails as paths
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Step 3: Calculate average contributions
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Avg(              ) = 400
Avg(              ) = 325
Avg(              ) = 275
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What happens if we have 1000 people?

• Number of cases = 2 to the number of features (8=2^3)
• Approximation algorithms of Shapley values

• Sampled Shapley
• Approximate Shapley value by sampling (not calculating all the cases) permutations

• Kernal SHAP
• Slightly faster than Sampled Shapley, but it assumes the independence of features.

• Tree SHAP
• Faster approximation algorithm, but it can only be applied to Tree-based models. Hence 

this technique is model-specific
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Interpretability tools

• SHAP Python library
• Learning Interpretability Tool (LIT)
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SHAP Python Library

• It provides popular implementations of 
approximate Shapley values, including 
Sampled Shapley, Kernel SHAP, Tree SHAP, 
etc.

• It has limited applications to domains 
such as images.

• Code Sample:
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SHAP for images (Examples)
• DeepExplainer     GradientExplainer  

  

BME2133: Lecture 7  ©2025 Zhiyu Wan 24

https://github.com/shap/

SHAP applied to MNIST

SHAP applied to ImageNet



Learning Interpretability Tool (LIT) 

• It mainly supports Natural Language Processing (NLP) with some 
preliminary support for tabular and image data. 

• What kind of examples does my model perform poorly on?
• Why did my model make this prediction? Does the model properly focus on 

important features, instead of obviously unimportant features like image 
background?

• Does my model behave consistently if I change things like textual style, verb 
tense, or pronoun gender?

• And does this method relate to counterfactual analysis in AI fairness and bias?
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https://pair-code.github.io/lit/
https://github.com/PAIR-code/lit



Take-away messages

• Understood 4 interpretability techniques
• Permutation Feature Importance
• Partial Dependence Plots (PDPs)
• Local Interpretable Model-Agnostic Explanations (LIME)
• Shapley Values

• SHAP (SHapley Additive exPlanations) 

• Knew 2 interpretability tools
• SHAP Python Library
• Learning Interpretability Tool (LIT) 
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Readings for the Next Week

 None
 Optional

None
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Feedback Survey

• One thing you learned or felt was 
valuable from today’s class & 
reading

• Muddiest point: what, if anything, 
feels unclear, confusing or 
“muddy”

• https://www.wjx.cn/vm/hX0mIro.aspx
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https://www.wjx.cn/vm/hX0mIro.aspx
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