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Homework 1 Hints

Question 1a (8 points). According to [1], how many 3-digit ZCTAs are completely identifiable for this 
population (i.e., the entire population is expected to be uniquely identified) according to day of birth? Provide 
documentation on how you arrived at this result.

Question 1b (8 points). According to [2], what are the 10 ZCTAs with the greatest proportion of uniquely 
identified individuals based on their day of birth? Provide documentation on how you arrived at this result.

Question 1c (9 points). Provide a scatterplot of the unique identifiability estimates for 3-digit ZCTAs according 
to day of birth for [1] vs [2]. At what point do the estimates from [1] significantly differ from [2]?

• Question 1d (9 points). Repeat the analysis in Question 1c, but now compute the expected proportion of the 
populations that are in a group of size 2 or smaller. At what point do the estimates from [1] significantly differ 
from [2]?
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Randomized (Golle ‘06)

• Don’t always have exact knowledge of what a data recipient has access to
• Disclose sample with {dob, gender, zip}, but don’t know the population’s values

• May know population counts, such as
• U.S. Census aggregates for {year of birth, gender, county}

• Conversion: {Year of Birth, ZIP}  {Date of Birth, ZIP}
• Alternative option: Randomly allocate 12,000 “people” to 365 cells
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Birth Year

1980

ZIP

zip1 12000

zip2 50000

…

zip m 10000

Birthdate
SUM

1/1/80 … 12/31/80

ZIP

zip1 random random 12000

zip2 random random 50000

…

zip m random random 10000



It’s an Occupancy Problem (Golle ‘06)
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• n people in aggregated bin
• b disaggregated bins
• the expected # of bins with exactly i people

• Total number of people in a group of size less than k
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Sample Calculation
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Quasi-ID values (Bins)
2 4 256 512 1024 8192

Population 
(Balls)

2 0.5 2.25 254.01 510.00 1022.00 8190.00
4 0.125 1.26 252.03 508.02 1020.01 8188.00

64 1.08 x 10-19 4.04 x 10-8 199.37 451.84 961.96 8128.25
1024 0.00 0.00 4.69 69.29 376.71 7229.41
2048 0.00 0.00 0.09 9.38 138.58 6379.94

Expected Number of  Quasi-ID values with 0 people



Sample Calculation

BME2133: Lecture 9  ©2025 Zhiyu Wan 6

Expected Number of  Quasi-ID values with 0 people

2 4 256 512 1024 8192
2 0.250 0.563 0.992 0.996 0.998 1.000
4 0.063 0.315 0.984 0.992 0.996 1.000

64 0.000 0.000 0.779 0.883 0.939 0.992
1024 0.000 0.000 0.018 0.135 0.368 0.882
2048 0.000 0.000 0.000 0.018 0.135 0.779

Quasi-ID values (Bins)

Population
(Balls)



Birthday Problem

• Assume birthday is uniformly distributed at random over the year.
• If n people are born in a year, the expected number of days on which 

exactly 1 person born is
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Golle’s Approach 

• Special case of general equation
• If n people are born in a year, the expected # of days on which 

exactly k people born is
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Hints
• Q1a
• According the paper of Sweeney’s, we should assume the day of birth is uniformly distributed within each age 

group (actually assuming the number of birth for every day is exactly equals to the expected number of birth 
every day!). For simplicity, I use age=100 as a maximum.
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Group Start Age End Age #years * days per year = thresholds
1 0 4 5 365 1825
2 5 9 5 365 1825
3 10 14 5 365 1825
4 15 17 3 365 1095
5 18 19 2 365 730
6 20 20 1 365 365
7 21 21 1 365 365
8 22 24 3 365 1095
9 25 29 5 365 1825

10 30 34 5 365 1825

First compute the thresholds (possible values) for each age group

For every 3-Digit ZCTA, use these twenty-three thresholds to minus twenty-three corresponding population, 
if all twenty-three age groups get positive number this ZCTA is marked as completely identifiable.



Hints

• Q1b
• The number of individuals that can be k-uniquely identified in certain region and certain time periods is as follows:

Where n is population in this region, N is number of days in this time period.

The computation for identified populations in group1 in 006 ZCTA is as follows:

k=1; n=42864; N=1825;
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Homework 1 Hints

• Question 2
• Question 2a (17 points). Use the one-sided t-test method proposed by Homer et al. [3] with a 90% 

confidence level. According to this method, which of the target individuals are predicted to be in the reference 
population? Show your work. Note 1: there are 9 degrees of freedom, so the 90% confidence level in this 
computation corresponds to a t-value of 1.38 or greater. Note 2: Remember, 00 contributes +0; “01” 
contributes +0.5.; “11” contributes +1.

• Question 2b (17 points). Using the one-sided t-test method described by Homer et al [3], which of the 
individuals predicted to be in the study, are predicted to be in the positive and negative diseases classes 
respectively? Show your work.

• One-sided t-test
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Programming Code
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The attacker knows:
• The genome of the target (her set of genomic variants) - 𝑌𝑌𝑖𝑖𝑖𝑖
• The allele frequencies of the Mixture he’s attacking - 𝑀𝑀𝑗𝑗
• Population allele frequencies - 𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗

Figure from: Homer N, et al. PLoS Genetics. 2008; 4(8): e1000167. 

Homer’s Attack in a Nutshell



So, where’s the Target?

• |Yij - Mj|  difference between individual & mixed study

• |Yij - Rj|  difference between individual & reference pop.

D(Yij) = |Yij - Rj| - |Yij - Mj|

• Null Hypothesis: Individual is not in mixed study.
• D(Yij) should be approaching 0 [due to “ancestral similarity” in M and R]

• Alternative Hypothesis
• D(Yij) > 0 because Mj is shifted away from reference by Yj’s contribution to the mixture
• D(Yij) < 0 because Yj is more similar to reference population than the mixture
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Testing

• µ0 : Mean of D(Yi) of all individuals not in the mixture

• SD(Yi): St. Dev. of D(Yi,j) for all SNPs j and individual Yi

• s: number of SNPs

• Can assume µ0 = 0 [random individual equidistant to M & R]

• Null hypotheses T = 0.  Alternative is that T > 0 (𝑻𝑻 > 𝜽𝜽 = 𝟏𝟏.𝟑𝟑𝟑𝟑)
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Hints

• Q2a
• Null Hypothesis: Individual is not in the reference.

• Q2b
• Null Hypothesis: Individual is not in the mixture.

• Null Hypothesis: Individual is not in the positive class

• Null Hypothesis: Individual is not in the negative class
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𝐷𝐷 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑗𝑗 − 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑗𝑗

𝐷𝐷 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑅𝑅𝑗𝑗 − 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑗𝑗

𝐷𝐷 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑗𝑗− − 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑗𝑗+

𝐷𝐷 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑗𝑗+ − 𝑌𝑌𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑗𝑗−



Adjustment to HW1

Question 3a (25 points): Generate a Manhattan plot and identify the SNP(s) significantly associated with each 
phenotype. (5 points for each phenotype.)

• Question 3b (7 points): Provide the R code (or code in other programming language) in a single file along 
with your submission and ensure it runs correctly.

Question 3a (25 points): Generate a Manhattan plot and identify the SNP(s) significantly associated with each 
phenotype. (25 points for one phenotype. Additional 5 points for each additional phenotype.)

• Question 3b (7 points): Provide the R code (or code in other programming language) in a single file along 
with your submission and ensure it runs correctly.
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Learning Objectives of This Lecture

After this lecture, students should be able to:
• Know the concept of differential privacy (DP)
• Know the concept of role-based access control (RBAC)
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Sanitization of Databases
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Real Database 
(RDB)

Sanitized Database 
(SDB)

Health records

Census data

Add noise, 
delete 

names, etc. 

Protect privacy

Provide useful 
information 

(utility)Adapted from Dr Malin’s slides



Basic Setting
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xn

xn-1



x3

x2

x1

San
Users

(government, 
researchers, marketers, 

…) 

query 1

answer 1

query T

answer T

DB=

random coins

¢ ¢ ¢ 



Examples of Sanitization Methods

• Input perturbation
• Add random noise to database, release

• Summary statistics
• Means, variances
• Marginal totals 
• Regression coefficients

• Output perturbation
• Summary statistics with noise

• Interactive versions of the above methods
• Auditor decides which queries are OK, type of noise
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Differential Privacy (informal)

Output is similar whether  any single individual’s record 
is included in the database or not
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C is no worse off  because her record is included in the computation

If there is already some risk of revealing a 
secret of C by combining auxiliary information 
and something learned from DB



Differential Privacy (informal)

Output is similar whether  any single individual’s record 
is included in the database or not
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C is no worse off  because her record is included in the computation

If there is already some risk of revealing a 
secret of C by combining auxiliary information 
and something learned from DB, then that risk 
is still there



Differential Privacy (informal)

Output is similar whether  any single individual’s record 
is included in the database or not
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C is no worse off  because her record is included in the computation

If there is already some risk of revealing a 
secret of C by combining auxiliary information 
and something learned from DB, then that risk 
is still there but not increased by C’s 
participation in the database



Differential Privacy is …

• … a guarantee about statistical confidentiality
• The behavior of the system  --  probability distribution on outputs -- is essentially unchanged, 

independent of whether any individual opts in or opts out of the dataset

• … a type of indistinguishability of behavior on neighboring inputs
• Suggests other applications:

• Approximate truthfulness as an economics solution concept (e.g., mechanism design)
• As alternative to functional (or syntactic) privacy (e.g., k-anonymity)

• … useless without utility guarantees
• Typically, “one size fits all” measure of utility 
• Simultaneously optimal for different priors, loss functions
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Strawman Definition

• Assume x1,…, xn are drawn i.i.d. (independent and identically distributed) from 
an unknown distribution

• Candidate definition: sanitization is safe if it only reveals the distribution

• Implied approach:
• Learn the distribution
• Release description of distribution or resample points
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Challenges with Classic Intuition

• Popular interpretation: prior and posterior views about an individual 
shouldn’t change “too much”

• How much is “too much?”
• Can’t achieve small levels of disclosure and keep the data useful
• Adversarial user is supposed to learn unpredictable things about the database
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Impossibility Result

• Privacy: for some definition of “privacy breach,” 
   ∀ distribution on databases, ∀ adversaries A, ∃ A′ 
   such that Pr(A(San)=breach) – Pr(A′()=breach) ≤ ε

• For reasonable “breach”, if San(DB) contains information about DB, then some adversary 
breaks this definition

• Example
• Alice knows that Bob is 2 inches taller than the average Male
• DB allows computing average height of a Male
• This DB breaks Bob’s privacy according to this definition… even if his record is not in the 

database!
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[Dwork]



Differential Privacy (1)

 Example with Males and Bob
• Adversary learns Bob’s height even if he is not in the database

 Intuition: “Whatever is learned would be learned regardless of whether or not Bill 
participates”
• Dual: Whatever is already known, situation won’t get worse
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Differential Privacy (2)

 Define n+1 games
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answer 1
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Differential Privacy (2)

 Define n+1 games
• Game 0: Adv. interacts with San(DB)

BME2133: Lecture 15  ©2025 Zhiyu Wan 30

xn

xn-1



0
x2

x1

San

query 1

answer 1

query T

answer T

DB=

random coins
¢ ¢ ¢ Adversary A



Differential Privacy (2)

 Define n+1 games
• Game 0: Adv. interacts with San(DB)
• Game i: Adv. interacts with San(DB-i); 
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Differential Privacy (2)

 Define n+1 games
• Game 0: Adv. interacts with San(DB)
• Game i: Adv. interacts with San(DB-i); DB-i = (x1,…,xi-1,0,xi+1,…,xn)
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Differential Privacy (2)

 Define n+1 games
• Game 0: Adv. interacts with San(DB)
• Game i: Adv. interacts with San(DB-i); DB-i = (x1,…,xi-1,0,xi+1,…,xn)

 Given S and prior p() on DB, define n+1 posterior distributions
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Differential Privacy (3)
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Definition: San is safe if 



Differential Privacy (3)
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San
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answer T

DB=

random coins
¢ ¢ ¢ Adversary A

Definition: San is safe if 
∀ prior distributions p(¢) on DB,
∀ transcripts S, ∀ i =1,…,n



Differential Privacy (3)
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Definition: San is safe if 
∀ prior distributions p(¢) on DB,
∀ transcripts S, ∀ i =1,…,n

StatDiff( p0(¢|S) , pi(¢|S) ) ≤ ε



Indistinguishability

BME2133: Lecture 15  ©2025 Zhiyu Wan 37

xn

xn-1



x3

x2

x1

San

query 1

answer 1

query T

answer T

DB=

random coins
¢ ¢ ¢ 

xn

xn-1



y3

x2

x1

San

query 1

answer 1

query T

answer T

DB=

random coins
¢ ¢ ¢ 

transcript
S

transcript
S’

Distance 
between

distributions
is at most ε

Differ in 1 row



Which Distance to Use? 

• Problem: ε must be large
• Any two databases induce transcripts at distance ≤ nε 
• To get utility, need ε > 1/n

• Statistical difference 1/n is not meaningful!

• Example: release random point in database
• San(x1, …, xn)  =  ( j, xj )  for random j 

• For every i , changing xi induces statistical difference 1/n

BME2133: Lecture 15  ©2025 Zhiyu Wan 38



(re)Formalizing Indistinguishability

Definition: San is ε-indistinguishable if
   ∀ A,  ∀ DB, DB’ which differ in 1 row, ∀ sets of transcripts S
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Equivalently, ∀ S:
p( San(DB) = S )
p( San(DB’)= S ) ≤  1 ± ε

p( San(DB) ∈ S ) ≤ (1 ± ε) p( San(DB’) ∈ S )

?

Adversary A 

query 1

answer 1
transcript

T

query 1

answer 1
transcript

S’



Indistinguishability -> Differential Privacy
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Definition: San is safe if 
∀ prior distributions p(¢) on DB,
∀ transcripts S, ∀ i =1,…,n

StatDiff( p0(¢|S) , pi(¢|S) ) ≤ ε



Indistinguishability -> Differential Privacy
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Definition: San is safe if 
∀ prior distributions p(¢) on DB,
∀ transcripts S, ∀ i =1,…,n

StatDiff( p0(¢|S) , pi(¢|S) ) ≤ ε



Indistinguishability -> Differential Privacy
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Definition: San is safe if 
∀ prior distributions p(¢) on DB,
∀ transcripts S, ∀ i =1,…,n

StatDiff( p0(¢|S) , pi(¢|S) ) ≤ ε

For every S and DB, indistinguishability implies 
 



Indistinguishability -> Differential Privacy

BME2133: Lecture 15  ©2025 Zhiyu Wan 43

Definition: San is safe if 
∀ prior distributions p(¢) on DB,
∀ transcripts S, ∀ i =1,…,n

StatDiff( p0(¢|S) , pi(¢|S) ) ≤ ε

For every S and DB, indistinguishability implies 
 



Indistinguishability -> Differential Privacy
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Definition: San is safe if 
∀ prior distributions p(¢) on DB,
∀ transcripts S, ∀ i =1,…,n

StatDiff( p0(¢|S) , pi(¢|S) ) ≤ ε

For every S and DB, indistinguishability implies

This implies StatDiff( p0(¢|S) , pi(¢| S) ) ≤ ε



Differential Privacy in Output Perturbation

• Intuition: f(x) can be released accurately when f is insensitive to individual entries 
x1, …, xn

• Global sensitivity GSf = maxneighbors x,x′ ||f(x) – f(x′)||1
• Example: GSaverage = 1/n  for sets of bits

• Theorem: f(x) + Lap(GSf / ε) is ε-indistinguishable
• Noise generated from Laplace distribution
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Tell me f(x)

f(x)+noise
x1…
xn

DatabaseUser



Sensitivity with Laplace Noise
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Sensitivity with Laplace Noise
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Sensitivity with Laplace Noise
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Sensitivity with Laplace Noise
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Sensitivity with Laplace Noise
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Sensitivity with Laplace Noise
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Differential Privacy: Summary

• San gives ε-differential privacy if for all values of DB and Me and all 
transcripts t:
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Pr (t)

Pr( San (DB - Me) = t)
Pr( San (DB + Me) = t)

≤ eε ≈  1 ± ε



Differential Privacy

No perceptible risk is incurred by joining DB
Anything adversary can do to me, it could do without me (my data)

BME2133: Lecture 15  ©2025 Zhiyu Wan 53

Neutralizes all linkage attacks.
Composes unconditionally and automatically:  Σi ε i  

Response Diff: X XX

Pr [response]

ratio bounded



Access Control

• Security Rule
• Pillars of Security
• Variations of Access Control
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HIPAA – Data Protection

PRIVACY RULE (2002)
Dept of Health & Human Services. Standards for privacy of individually 
identifiable health information; Final Rule. Federal Register. 45 CFR: Pt 

160 and 164.

SECURITY RULE (2003)
Dept of Health & Human Services. Standards for the Protection of 

Electronic Health Information; Final Rule. Federal Register. 45 CFR: Pt 
164.
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HIPAA Security Rule

• Administrative Safeguards
• Physical Safeguards
• Technical Safeguards
• Organizational Requirements
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http://www.cms.hhs.gov/SecurityStandard/



Administrative Safeguards
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Standards Implementation Specification Required vs. Addressable

Security Management Process

Risk Analysis R

Risk Management R

Sanction Policy R

Information System Activity Review R

Assigned Security Responsibility R

Workforce Security

Authorization and/or Supervision A

Workforce Clearance Procedure A

Termination Procedures A

Information Access Management

Isolating Healthcare Clearinghouse Function R

Access Authorization A

Access Establishment and Modification A

Security Awareness & Training

Security Reminders A

Protection from Malicious Software A

Log-in Monitoring A

Security Incident Procedures Response and Reporting R

Contingency Plan Data Backup Plan R

Disaster Recovery Plan R

Emergency Mode Operation Plan R



Physical Safeguards
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Standards Implementation Specification Required vs. Addressable

Facility Access Controls

Contingency Operations A

Facility Security Plan A

Access Control and Validation Procedures A

Maintenance Records A

Workstation Use R

Workstation Security R

Device & Media Controls

Disposal R

Media Reuse R

Accountability A

Data Backup & Storage A



Technical Safeguards
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Standards Implementation Specification Required vs. Addressable

Access Control

Unique User Identification R

Emergency Access Procedure R

Automatic Logoff A

Encryption and Decryption A

Audit Controls R

Integrity Mechanism to Authenticate ePHI A

Person or Entity Authentication R

Transmission Security
Integrity Controls A

Encryption A



Three Pillars of Security
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Least Privilege Separation of 
Duties

Data 
Abstraction



Least Privilege

User should be provided with no 
more privileges than are 
necessary to perform their job
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Separation of Duties

Requirement for multiple types of 
individuals to complete a task
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Data Abstraction

Permissions are related to the 
type of data being handled
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Access Control – What to Control?

• Subjects S (or Users)
• Objects O (or Patients)
• Rights R
Read from Record
Issue Order

Could specialize to “type” of information
• demographics
• diagnoses
• treatments
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Write to Record
 Request Consult



Subjects & Principals

• One-to-many mapping of subjects 
to principals

• Intention is to ensure 
accountability for one’s actions
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Dr. X

X.Physician

X.Supervisor

X.Teacher



Many Variations

• Access Matrix (AM)
• Mandatory Access Control (MAC)
• Discretionary Access Control (DAC)
• Role-Based Access Control (RBAC)
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Abstraction of Access Control
(Lampson 1971)

• A right is a relation for subjects and objects

• Specification of which rights can be invoked by which subject for 
which object

BME2133: Lecture 15  ©2025 Zhiyu Wan 67

r(s,o) ⊆ Rel

B. Lampson. Protection. Proc. 5th Princeton Conference on Information Sciences and Systems. 1971: 437.



Access Matrix
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Object
Subject A B C
Dr. D R-X RWX RWX
Nurse E R-X RWX R-X
Biller F R-- R-- R--

r(Dr. D, C) =
 {R, W, X} 



How to Use an Access Matrix

• Can allow for dynamic protections
• Operations for assignment & revocation of rights

• Can permit “special” rights:
• Ownership of object
• Copy of object
• Control of rights modification for object
• …

BME2133: Lecture 15  ©2025 Zhiyu Wan 69



Views on the Matrix

• Access Control List (ACL)
• For a single object
• Indicates which subject can invoke which right
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Subject Object A
Dr. D R, X
Nurse E R, X
Biller F R



Views on the Matrix

• Capability List
• For a single subject
• Indicates which rights can be invoked by the subject across objects which 

right
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Object
Subject A B C
Dr. D R, X R, W, X R, W, X



Many Variations

• Access Matrix (AM)
• Mandatory Access Control (MAC)
• Discretionary Access Control (DAC)
• Role-Based Access Control (RBAC)

BME2133: Lecture 15  ©2025 Zhiyu Wan 72



Mandatory vs. Discretionary

• Mandatory access controls (MAC) restrict the access of subjects to 
objects on the basis of “security” labels

• Discretionary access controls (DAC) permits access rights to be 
propagated from one subject to another

• Possession of an access right by a subject is sufficient to allow access to the 
object
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Take a Step Back
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User 1

User 2

User m

Permission 1

Permission 2

Permission n



Rights (or Permission) Assignment
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User 1

User 2

User m

Permission 1

Permission 2

Permission n



Rights (or Permission) Assignment
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User 1

User 2

User m

Permission 1

Permission 2

Permission n



Delegation
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User 1

User 2

User m

Permission 1

Permission 2

Permission n

User 3

User 4

User 5

Permission 3

Permission 4

Permission 5



Delegation
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User 1

User 2

User m

Permission 1

Permission 2

Permission n

User 3

User 4

User 5

Permission 3

Permission 4

Permission 5



Delegation
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User 1

User 2

User m

Permission 1

Permission 2

Permission n

User 3

User 4

User 5

Permission 3

Permission 4

Permission 5



User-Permission Relation via Transitivity
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User 1

User 2

User m

Permission 1

Permission 2

Permission n

User 3

User 4

User 5

Permission 3

Permission 4

Permission 5



Many Variations

• Access Matrix (AM)
• Mandatory Access Control (MAC)
• Discretionary Access Control (DAC)
• Role-Based Access Control (RBAC)
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Many Potential Assignments
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User 1

User 2

User m

Permission 1

Permission 2

Permission n



Role-Based Access Control (RBAC)
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Role-Based Access Control (RBAC)
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User 2
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Can Map Users to Roles
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User 1

User 2

User m
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User 3
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Role 2

Role k



Users can Have Multiple Roles!
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A Formal RBAC System

• Defined over the following principals
• U: user set
• R: role set
• P: permission set
• S: session set (not always used)

• Relations
• UA ⊆ U × R (which users belong to which roles)
• PA ⊆ P × R (which permissions belong to which roles)

• Note: Permissions are positive (not negative) statements

• Functions
• User: S → U (e.g., session si belongs to user uj)
• Roles: S → 2|R| (mapping of each session to set of roles)
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“Core” RBAC Framework

• Notice: permissions are often partitioned into Operations & Objects
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D. Ferraiolo, et al. ACM Transactions on Information and System Security. 2001; 4(3): 224-274.

Permissions

Users Roles

Sessions

Operations Objects
UA PA



Does RBAC Help?
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RBAC in Practice

• Various database management systems (DBMS)*

• Enterprise Security Management
• Take a look at the IBM Security Identity Governance and Intelligence (IGI)
• https://www.ibm.com/us-en/marketplace/identity-governance-and-intelligence

• Various operating systems use RBAC in a limited way (think groups 
and rights)

BME2133: Lecture 15  ©2025 Zhiyu Wan 90



Readings for the Next Week

 1. Kantarcioglu M, Jiang W, Liu Y, Malin B. A cryptographic approach to securely share and query 
genomic sequences. IEEE Transactions on information technology in biomedicine. 2008 Sep 
3;12(5):606-17.
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4358920

 Optional
2. Jha S, Kruger L, Shmatikov V. Towards practical privacy for genomic computation. In 2008 IEEE 

Symposium on Security and Privacy (sp 2008) 2008 May 18 (pp. 216-230). IEEE.
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4531155

3. 《Responsible Genomic Data Sharing Challenges and Approaches》Chs.5&6.
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https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4358920
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4531155


Feedback Survey

• One thing you learned or felt was 
valuable from today’s class & 
reading

• Muddiest point: what, if anything, 
feels unclear, confusing or 
“muddy”

• https://www.wjx.cn/vm/hX0mIro.aspx
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