

Medical Data Privacy and Ethics in the Age of Artificial Intelligence

Lecture 15: Differential Privacy and Access Control

Zhiyu Wan, PhD (wanzhy@shanghaitech.edu.cn)

Assistant Professor of Biomedical Engineering

ShanghaiTech University

April 30, 2025

Homework 1 Hints

Question 1a (8 points). According to [1], how many 3-digit ZCTAs are completely identifiable for this population (i.e., the entire population is expected to be uniquely identified) according to day of birth? Provide documentation on how you arrived at this result.

Question 1b (8 points). According to [2], what are the 10 ZCTAs with the greatest proportion of uniquely identified individuals based on their day of birth? Provide documentation on how you arrived at this result.

Question 1c (9 points). Provide a scatterplot of the unique identifiability estimates for 3-digit ZCTAs according to day of birth for [1] vs [2]. At what point do the estimates from [1] significantly differ from [2]?

- **Question 1d (9 points).** Repeat the analysis in Question 1c, but now compute the expected proportion of the populations that are in a group of size 2 or smaller. At what point do the estimates from [1] significantly differ from [2]?

Randomized (Golle '06)

- Don't always have exact knowledge of what a data recipient has access to
 - Disclose sample with $\{dob, gender, zip\}$, but don't know the population's values
- May know population counts, such as
 - U.S. Census aggregates for $\{year\ of\ birth, gender, county\}$
- Conversion: $\{\text{Year of Birth, ZIP}\} \rightarrow \{\text{Date of Birth, ZIP}\}$
- Alternative option: Randomly allocate 12,000 “people” to 365 cells

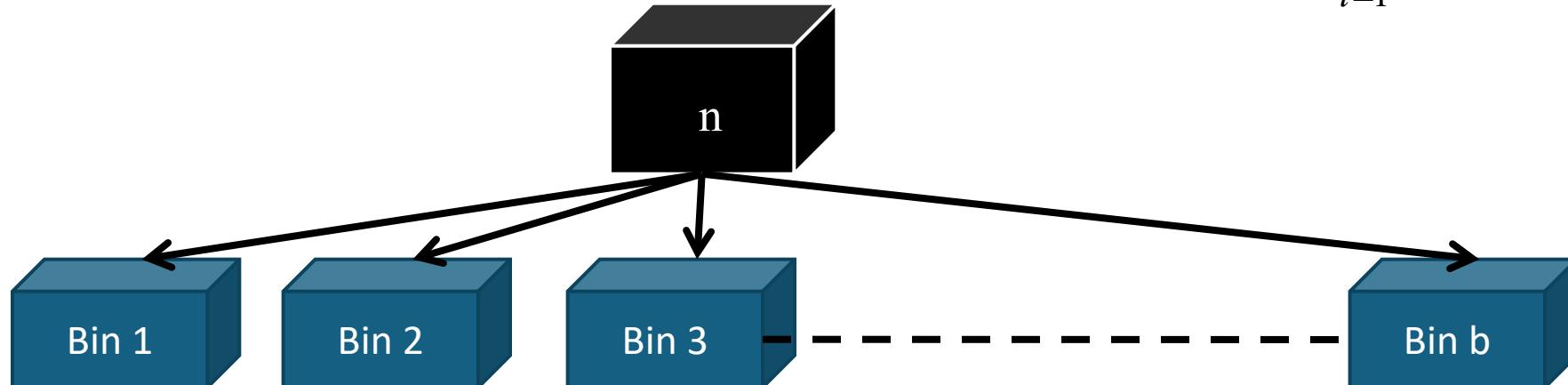
		Birth Year			Birthdate			SUM
		1980			1/1/80	...	12/31/80	
ZIP	zip1	12000	ZIP	zip1	random		random	12000
	zip2	50000		zip2	random		random	50000
				
	zip m	10000		zip m	random		random	10000

It's an Occupancy Problem (Golle '06)

- n people in aggregated bin
- b disaggregated bins
- the expected # of bins with exactly i people
- Total number of people in a group of size less than k

$$f_i(n) = \binom{n}{i} b^{1-n} (b-1)^{n-i}$$

$$r_k(n) = \sum_{i=1}^{k-1} f_i(n)$$



Sample Calculation

		<i>Quasi-ID values (Bins)</i>					
		2	4	256	512	1024	8192
Population (Balls)	2	0.5	2.25	254.01	510.00	1022.00	8190.00
	4	0.125	1.26	252.03	508.02	1020.01	8188.00
	64	1.08×10^{-19}	4.04×10^{-8}	199.37	451.84	961.96	8128.25
	1024	0.00	0.00	4.69	69.29	376.71	7229.41
	2048	0.00	0.00	0.09	9.38	138.58	6379.94

Expected Number of Quasi-ID values with 0 people

Sample Calculation

		Quasi-ID values (Bins)					
		2	4	256	512	1024	8192
Population (Balls)	2	0.250	0.563	0.992	0.996	0.998	1.000
	4	0.063	0.315	0.984	0.992	0.996	1.000
	64	0.000	0.000	0.779	0.883	0.939	0.992
	1024	0.000	0.000	0.018	0.135	0.368	0.882
	2048	0.000	0.000	0.000	0.018	0.135	0.779

Expected Number of Quasi-ID values with 0 people

Birthday Problem

- Assume birthday is uniformly distributed at random over the year.
- If n people are born in a year, **the expected number of days on which exactly 1 person born is**

$$f_1(n) = n * \left(\frac{364}{365} \right)^{n-1}$$

Golle's Approach

- Special case of general equation
- If n people are born in a year, **the expected # of days on which exactly k people born** is

$$f_k(n) = \binom{n}{k} 365^{1-n} 364^{n-k}$$

Hints

- **Q1a**
- According the paper of Sweeney's, we should assume the day of birth is uniformly distributed within each age group (actually assuming the number of birth for every day is exactly equals to the expected number of birth every day!). For simplicity, I use age=100 as a maximum.
First compute the thresholds (possible values) for each age group

Group	Start Age	End Age	#years	*	days per year	=	thresholds
1	0	4	5		365		1825
2	5	9	5		365		1825
3	10	14	5		365		1825
4	15	17	3		365		1095
5	18	19	2		365		730
6	20	20	1		365		365
7	21	21	1		365		365
8	22	24	3		365		1095
9	25	29	5		365		1825
10	30	34	5		365		1825

For every 3-Digit ZCTA, use these twenty-three thresholds to minus twenty-three corresponding population, if all twenty-three age groups get positive number this ZCTA is marked as completely identifiable.

Hints

- **Q1b**

- The number of individuals that can be k -uniquely identified in certain region and certain time periods is as follows:

$$f_k(n) = \binom{n}{k} N^{1-n} (N-1)^{n-k}$$

$$= \binom{n}{k} N^{1-k} \left(\frac{N-1}{N}\right)^{n-k}$$

Where n is population in this region, N is number of days in this time period.

The computation for identified populations in group1 in 006 ZCTA is as follows:

$k=1$; $n=42864$; $N=1825$;

$$\begin{aligned} f_k(n) &= \binom{n}{k} N^{1-k} \left(\frac{N-1}{N}\right)^{n-k} \\ &= \binom{42864}{1} 1825^0 \left(\frac{1824}{1825}\right)^{42864} \\ &= 2.6866250497 \times 10^{-6} \end{aligned}$$

Homework 1 Hints

- **Question 2**
- **Question 2a (17 points).** Use the one-sided t-test method proposed by Homer et al. [3] with a 90% confidence level. According to this method, which of the target individuals are predicted to be in the reference population? Show your work. Note 1: there are 9 degrees of freedom, so the 90% confidence level in this computation corresponds to a t-value of **1.38** or greater. Note 2: Remember, 00 contributes +0; “01” contributes +0.5.; “11” contributes +1.
- **Question 2b (17 points).** Using the one-sided t-test method described by Homer et al [3], which of the individuals predicted to be in the study, are predicted to be in the positive and negative diseases classes respectively? **Show your work.**

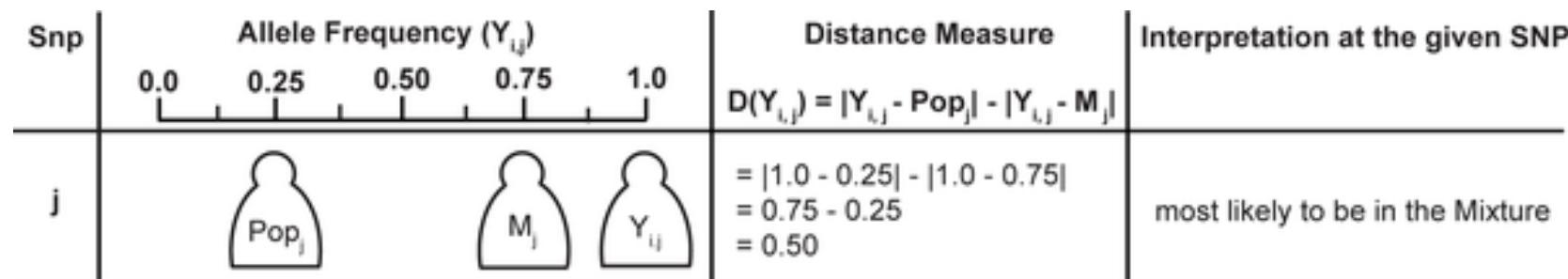
Programming Code

- One-sided t-test

Homer's Attack in a Nutshell

The attacker knows:

- The genome of the target (her set of genomic variants) - $Y_{i,j}$
- The allele frequencies of the Mixture he's attacking - M_j
- Population allele frequencies - Pop_j



So, where's the Target?

- $|Y_{ij} - M_j| \leftarrow$ difference between individual & mixed study
- $|Y_{ij} - R_j| \leftarrow$ difference between individual & reference pop.

$$D(Y_{ij}) = |Y_{ij} - R_j| - |Y_{ij} - M_j|$$

- Null Hypothesis: Individual is not in mixed study.
 - $D(Y_{ij})$ should be approaching 0 [due to “ancestral similarity” in M and R]
- Alternative Hypothesis
 - $D(Y_{ij}) > 0$ because M_j is shifted away from reference by Y_j ’s contribution to the mixture
 - $D(Y_{ij}) < 0$ because Y_j is more similar to reference population than the mixture

Testing

$$T(Y_i) = \frac{E(D(Y_i)) - \mu_0}{SD(D(Y_i))/\sqrt{s}}$$

- μ_0 : Mean of $D(Y_i)$ of all individuals **not** in the mixture
- $SD(Y_i)$: St. Dev. of $D(Y_{i,j})$ for all SNPs j and individual Y_i
- s : number of SNPs
- Can assume $\mu_0 = 0$ [random individual equidistant to M & R]
- Null hypotheses $T = 0$. Alternative is that $T > 0$ ($T > \theta = 1.38$)

Hints

$$T(Y_i) = \frac{E(D(Y_i)) - \mu_0}{SD(D(Y_i))/\sqrt{s}}$$

- Q2a

- Null Hypothesis: Individual is not in the reference.

$$D(Y_{ij}) = |Y_{ij} - M_j| - |Y_{ij} - R_j|$$

- Q2b

- Null Hypothesis: Individual is not in the mixture.

$$D(Y_{ij}) = |Y_{ij} - R_j| - |Y_{ij} - M_j|$$

- Null Hypothesis: Individual is not in the positive class

$$D(Y_{ij}) = |Y_{ij} - C_j^-| - |Y_{ij} - C_j^+|$$

- Null Hypothesis: Individual is not in the negative class

$$D(Y_{ij}) = |Y_{ij} - C_j^+| - |Y_{ij} - C_j^-|$$

Adjustment to HW1

Question 3a (25 points): Generate a Manhattan plot and identify the SNP(s) significantly associated with each phenotype. (5 points for each phenotype.)

- **Question 3b (7 points):** Provide the R code (or code in other programming language) in a single file along with your submission and ensure it runs correctly.

Question 3a (25 points): Generate a Manhattan plot and identify the SNP(s) significantly associated with each phenotype. (**25 points for one phenotype. Additional 5 points for each additional phenotype.**)

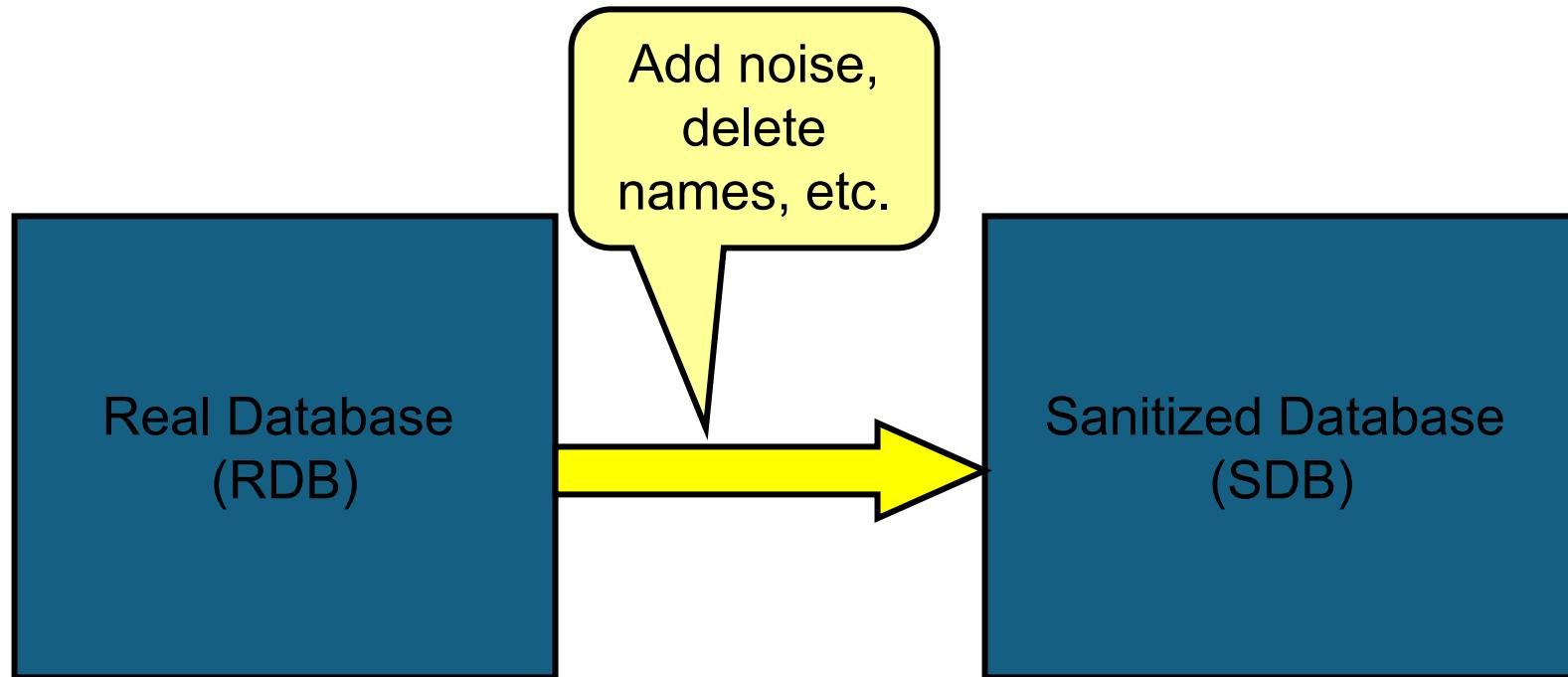
- **Question 3b (7 points):** Provide the R code (or code in other programming language) in a single file along with your submission and ensure it runs correctly.

Learning Objectives of This Lecture

After this lecture, students should be able to:

- Know the concept of differential privacy (DP)
- Know the concept of role-based access control (RBAC)

Sanitization of Databases



Health records

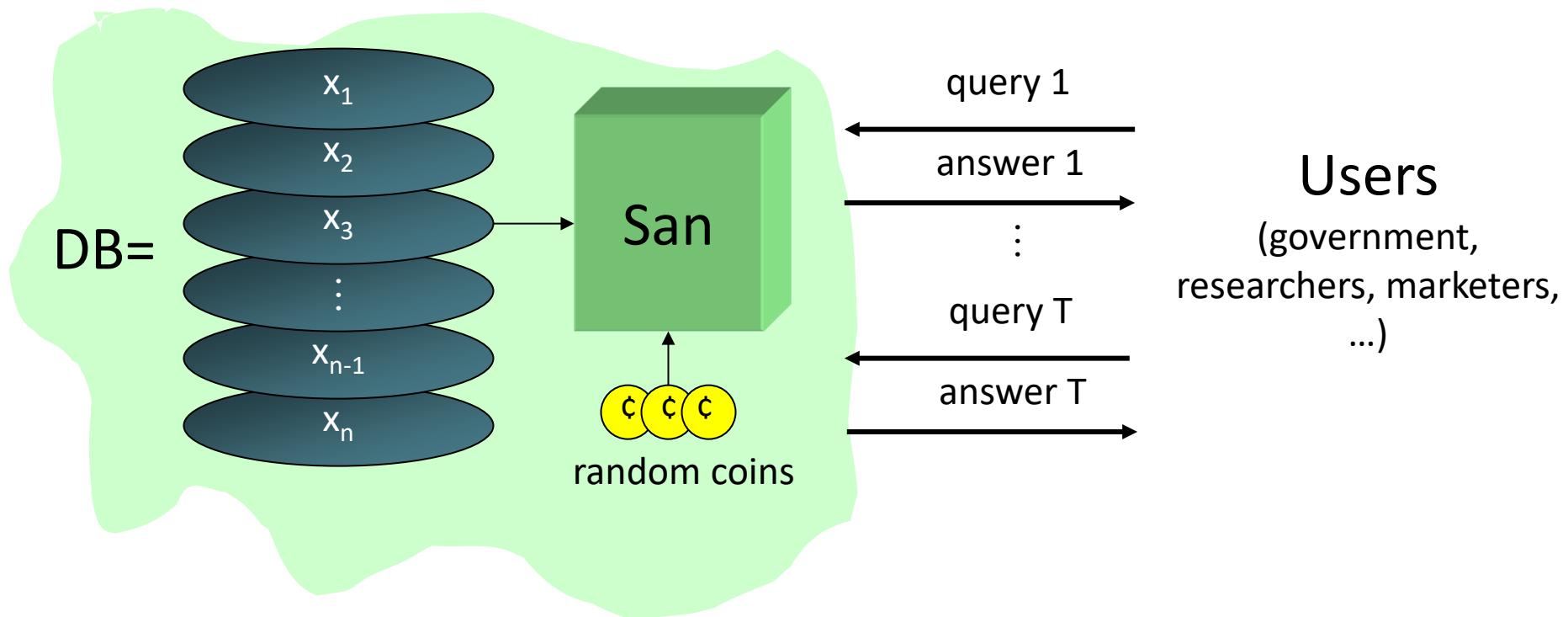
Census data

Protect privacy

Provide useful
information
(utility)

Adapted from Dr Malin's slides

Basic Setting



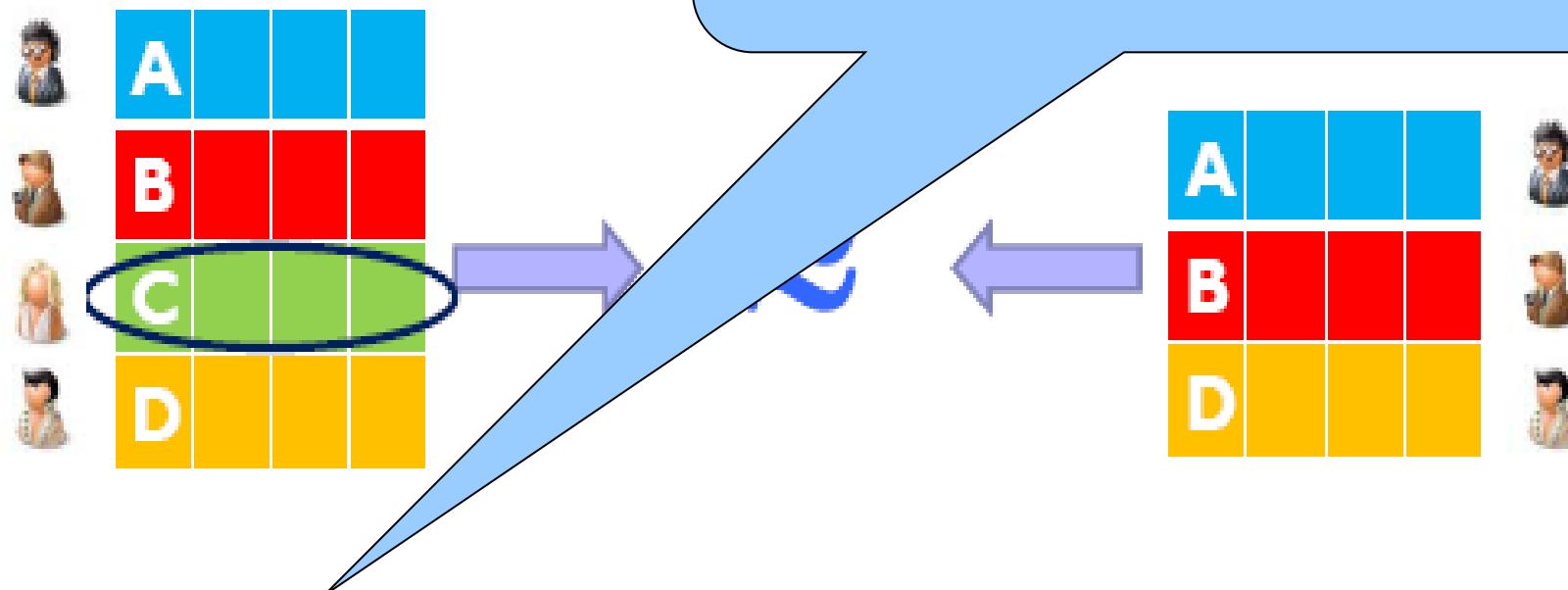
Examples of Sanitization Methods

- Input perturbation
 - Add random noise to database, release
- Summary statistics
 - Means, variances
 - Marginal totals
 - Regression coefficients
- Output perturbation
 - Summary statistics with noise
- Interactive versions of the above methods
 - Auditor decides which queries are OK, type of noise

Differential Privacy (informal)

Output is similar whether any single row is included in the database or not

If there is already some risk of revealing a secret of C by combining auxiliary information and something learned from DB

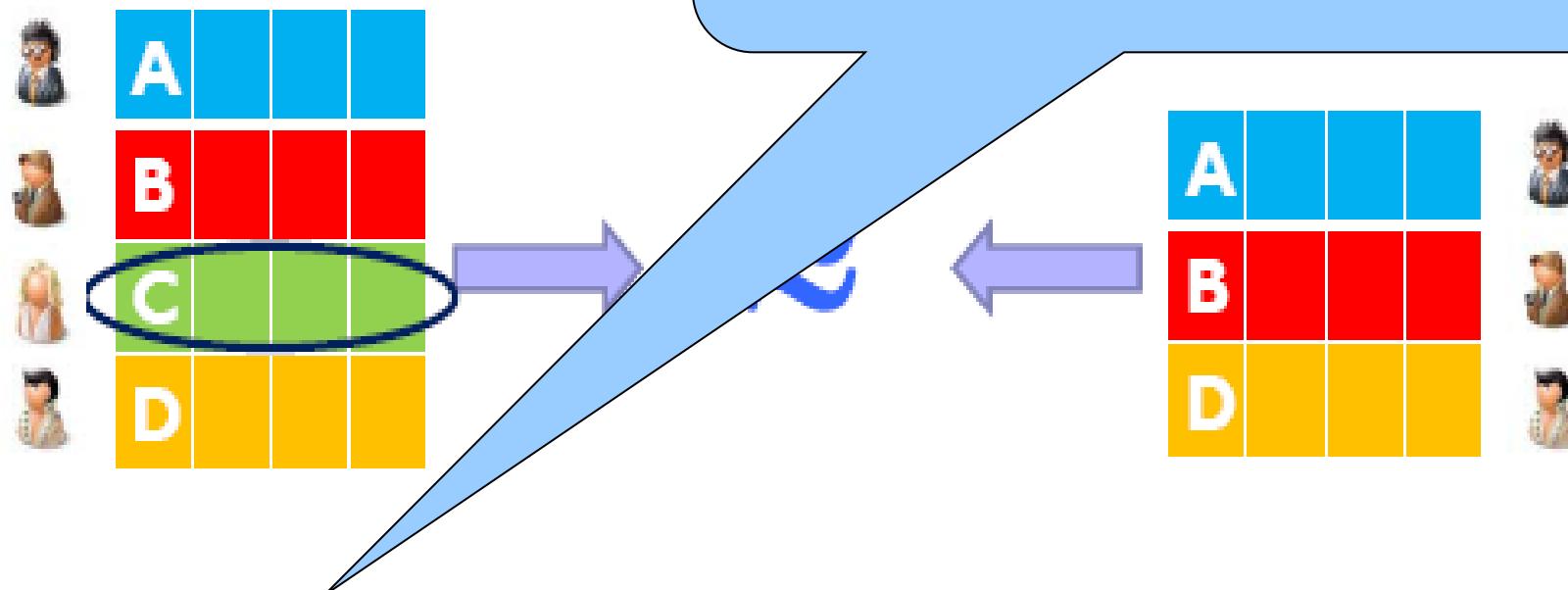


C is **no worse off** because her record is included in the computation

Differential Privacy (informal)

Output is similar whether any single record is included in the database or not

If there is already some risk of revealing a secret of C by combining auxiliary information and something learned from DB, then that risk is still there

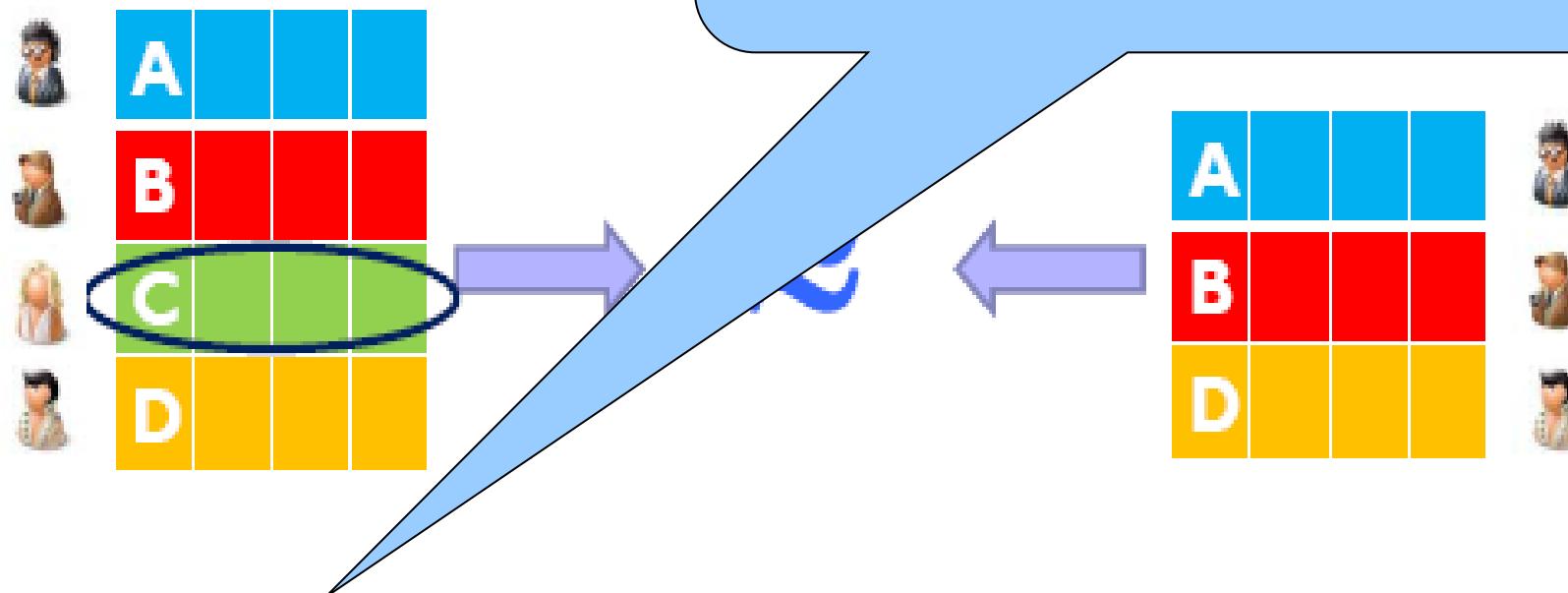


C is **no worse off** because her record is included in the computation

Differential Privacy (informal)

Output is similar whether any single record is included in the database or not

If there is already some risk of revealing a secret of C by combining auxiliary information and something learned from DB, then that risk is still there but not increased by C's participation in the database



C is **no worse off** because her record is included in the computation

Differential Privacy is ...

- ... a guarantee about statistical confidentiality
 - The behavior of the system -- probability distribution on outputs -- is essentially unchanged, independent of whether any individual opts in or opts out of the dataset
- ... a type of indistinguishability of behavior on neighboring inputs
 - Suggests other applications:
 - Approximate truthfulness as an economics solution concept (e.g., mechanism design)
 - As alternative to functional (or syntactic) privacy (e.g., *k-anonymity*)
- ... useless without utility guarantees
 - Typically, “one size fits all” measure of utility
 - Simultaneously optimal for different priors, loss functions

Strawman Definition

- Assume x_1, \dots, x_n are drawn i.i.d. (independent and identically distributed) from an unknown distribution
- Candidate definition: sanitization is safe if it only reveals the distribution
- Implied approach:
 - Learn the distribution
 - Release description of distribution or resample points

Challenges with Classic Intuition

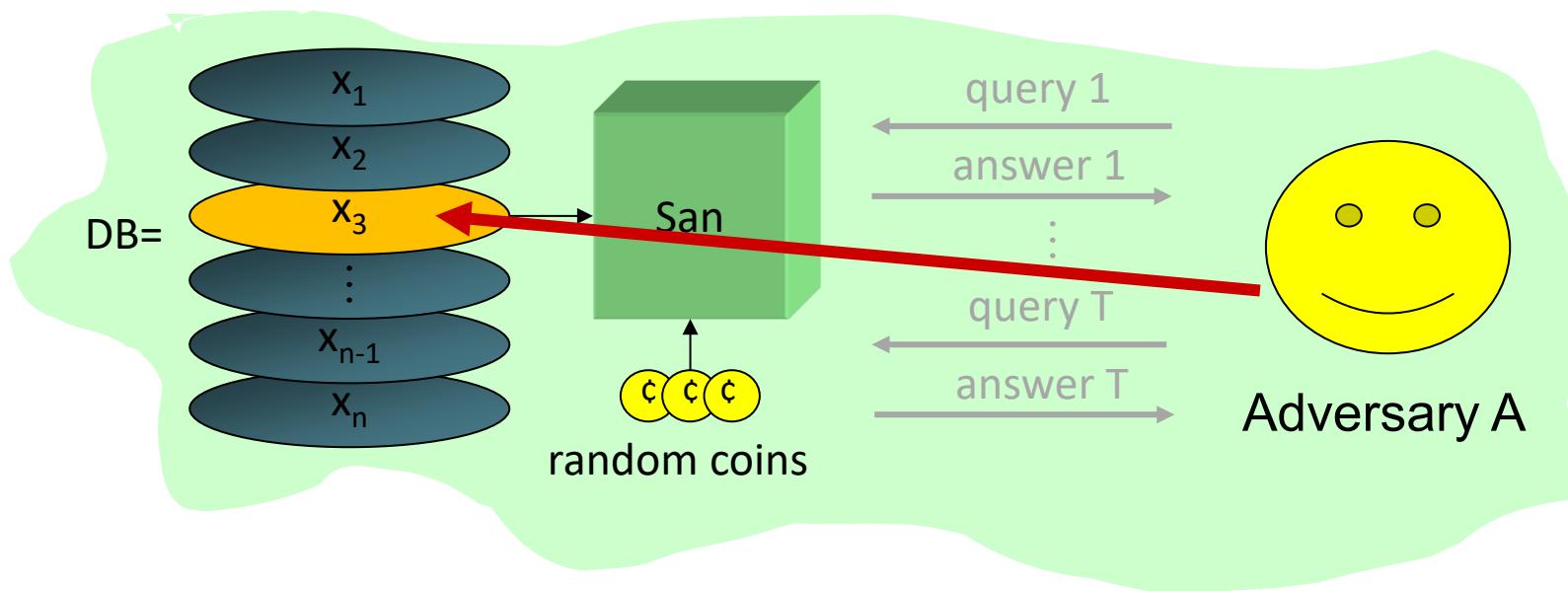
- Popular interpretation: prior and posterior views about an individual shouldn't change “too much”
- How much is “too much?”
 - Can't achieve small levels of disclosure and keep the data useful
 - **Adversarial user is supposed to learn unpredictable things about the database**

Impossibility Result

[Dwork]

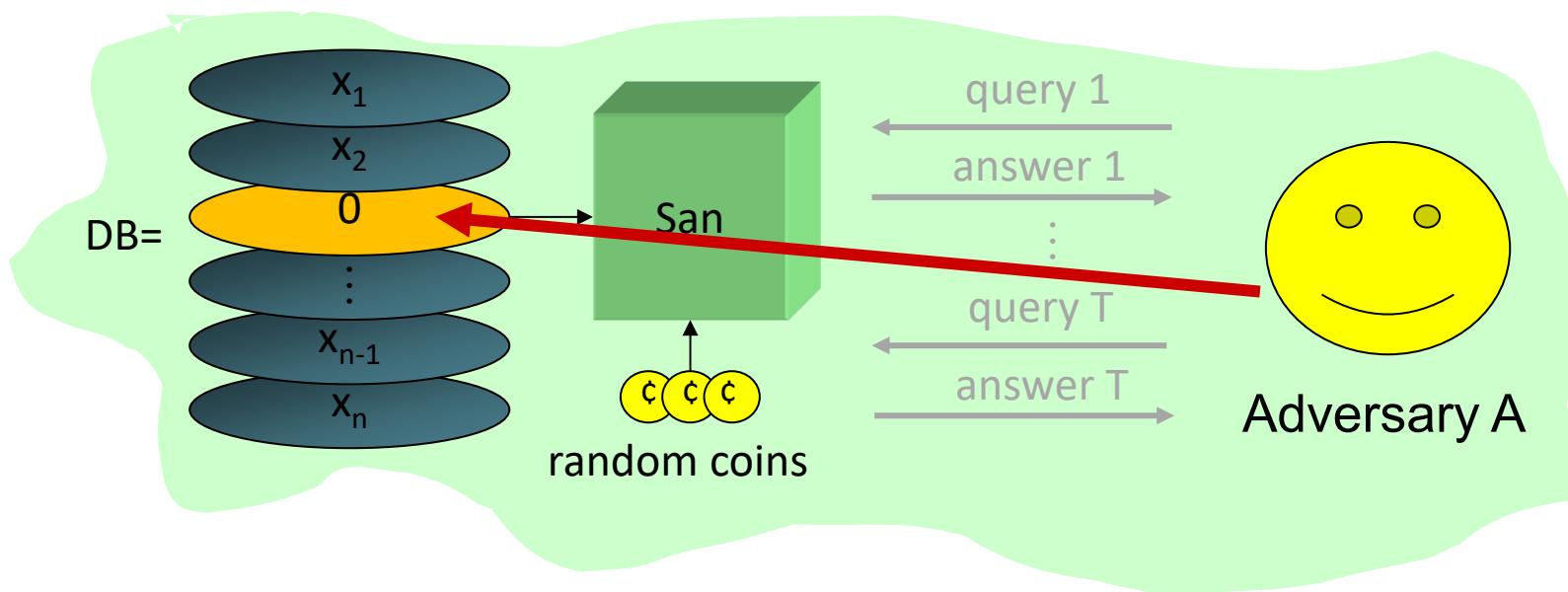
- Privacy: for some definition of “privacy breach,”
 \forall distribution on databases, \forall adversaries A , $\exists A'$
such that $\Pr(A(\text{San})=\text{breach}) - \Pr(A'(\text{San})=\text{breach}) \leq \varepsilon$
 - For reasonable “breach”, if $\text{San}(\text{DB})$ contains information about DB, then some adversary breaks this definition
- Example
 - Alice knows that Bob is 2 inches taller than the average Male
 - DB allows computing average height of a Male
 - This DB breaks Bob’s privacy according to this definition... even if his record is not in the database!

Differential Privacy (1)



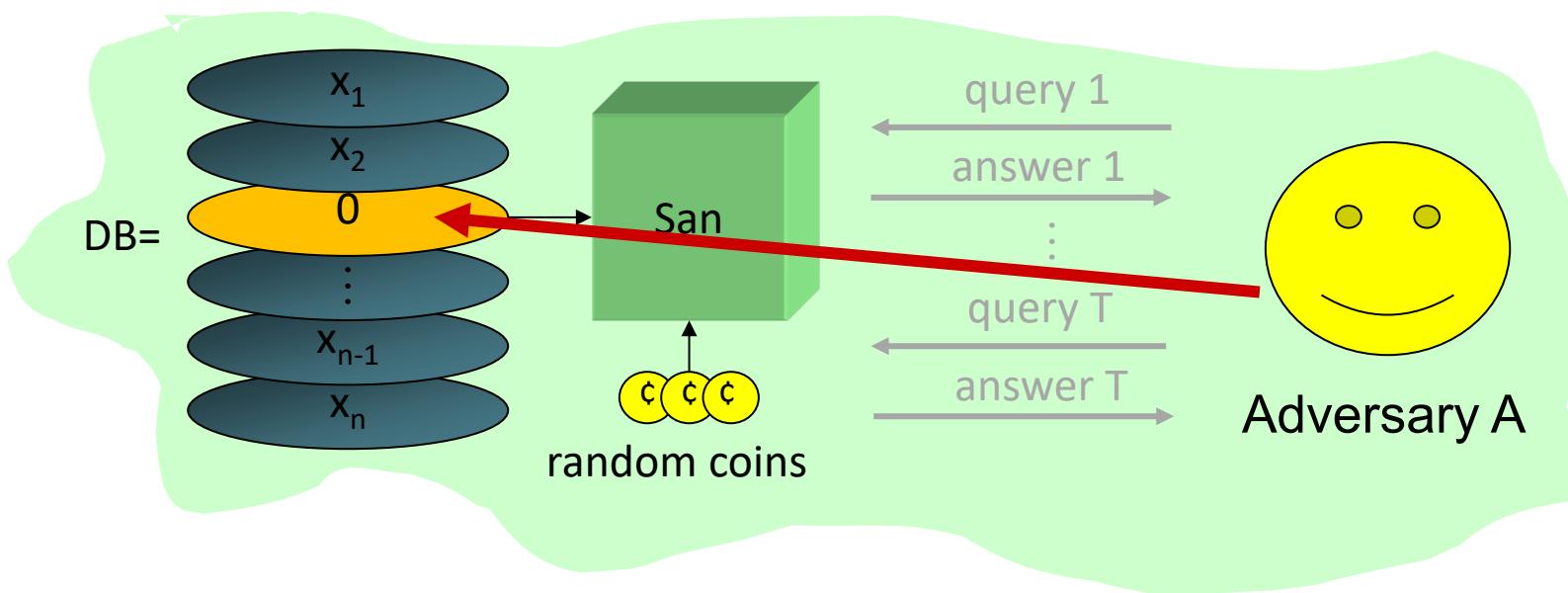
- Example with Males and Bob
 - Adversary learns Bob's height even if he is not in the database
- Intuition: “Whatever is learned would be learned regardless of whether or not Bill participates”
 - Dual: Whatever is already known, situation won’t get worse

Differential Privacy (2)



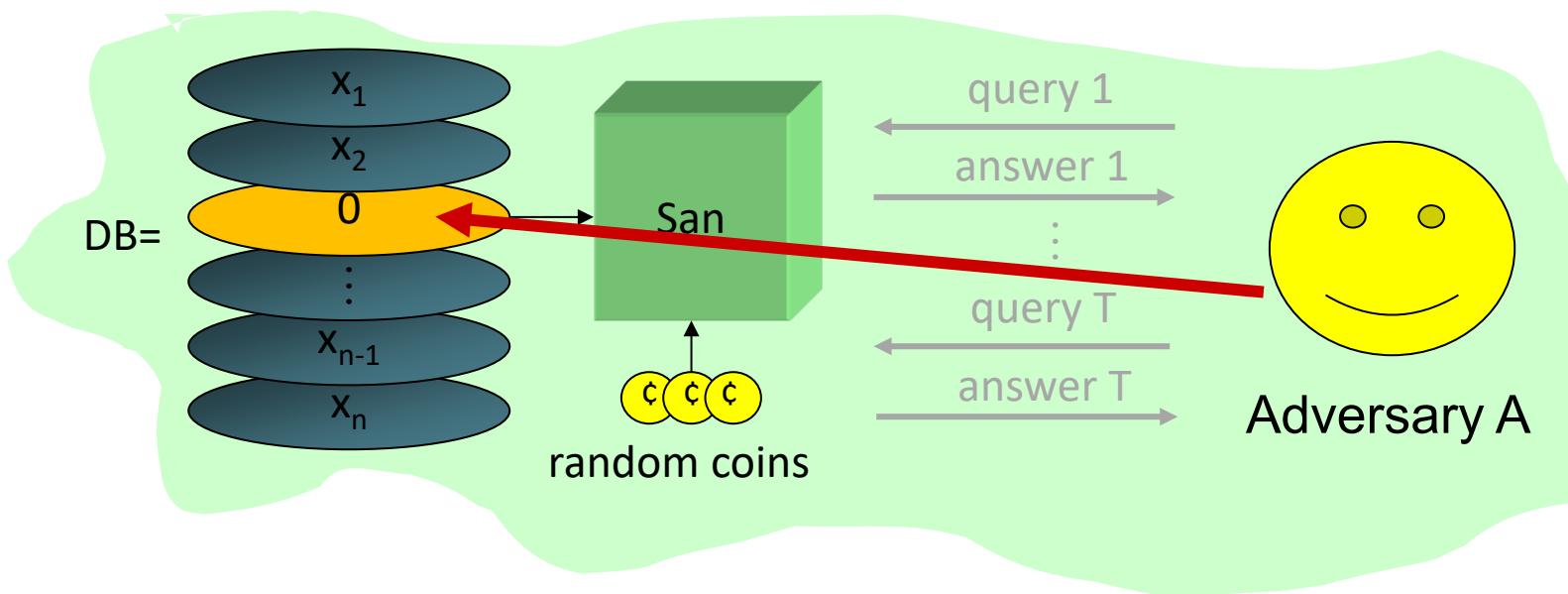
- Define $n+1$ games

Differential Privacy (2)



- Define $n+1$ games
 - Game 0: Adv. interacts with $San(DB)$

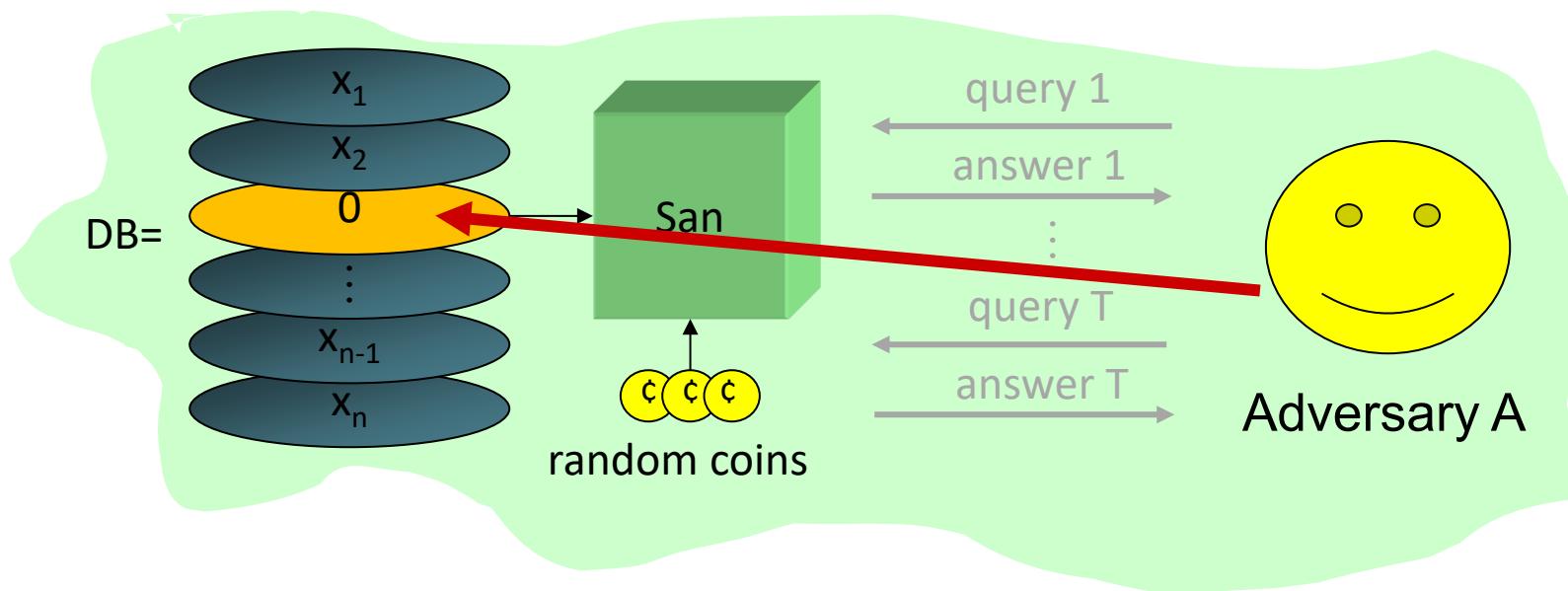
Differential Privacy (2)



□ Define $n+1$ games

- Game 0: Adv. interacts with $San(DB)$
- Game i : Adv. interacts with $San(DB_{-i})$;

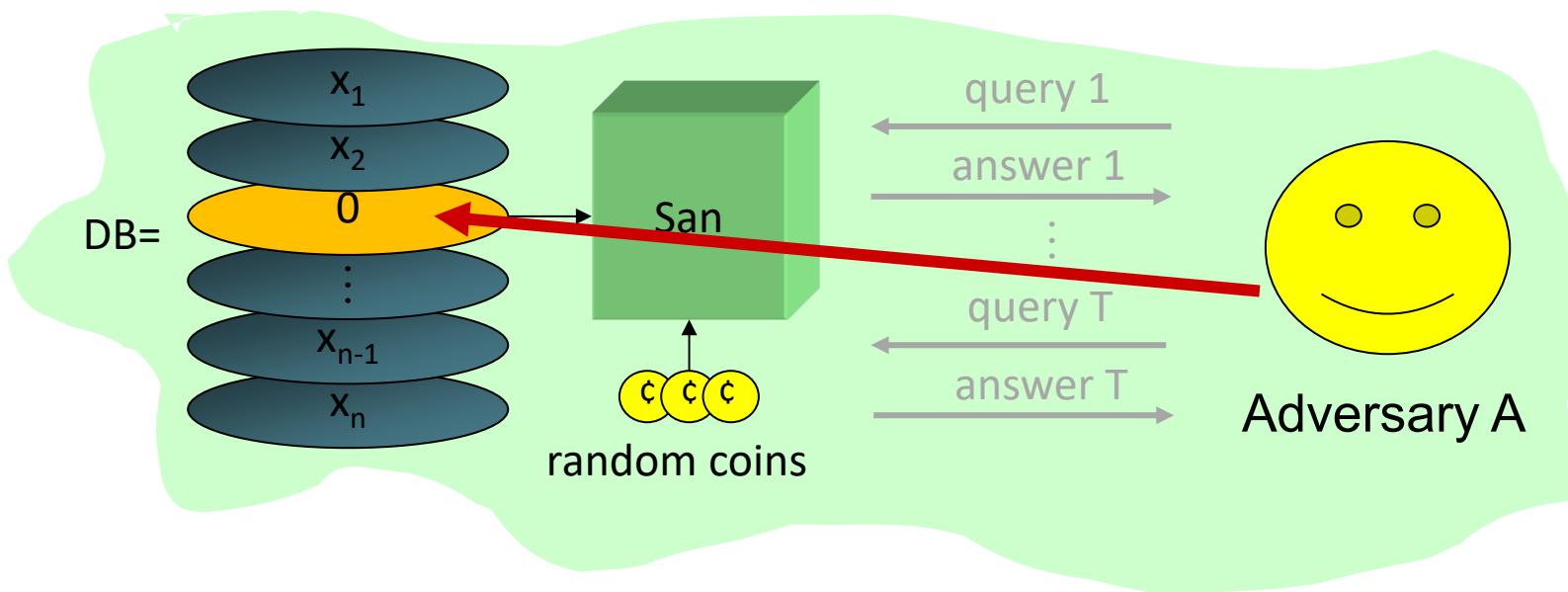
Differential Privacy (2)



□ Define $n+1$ games

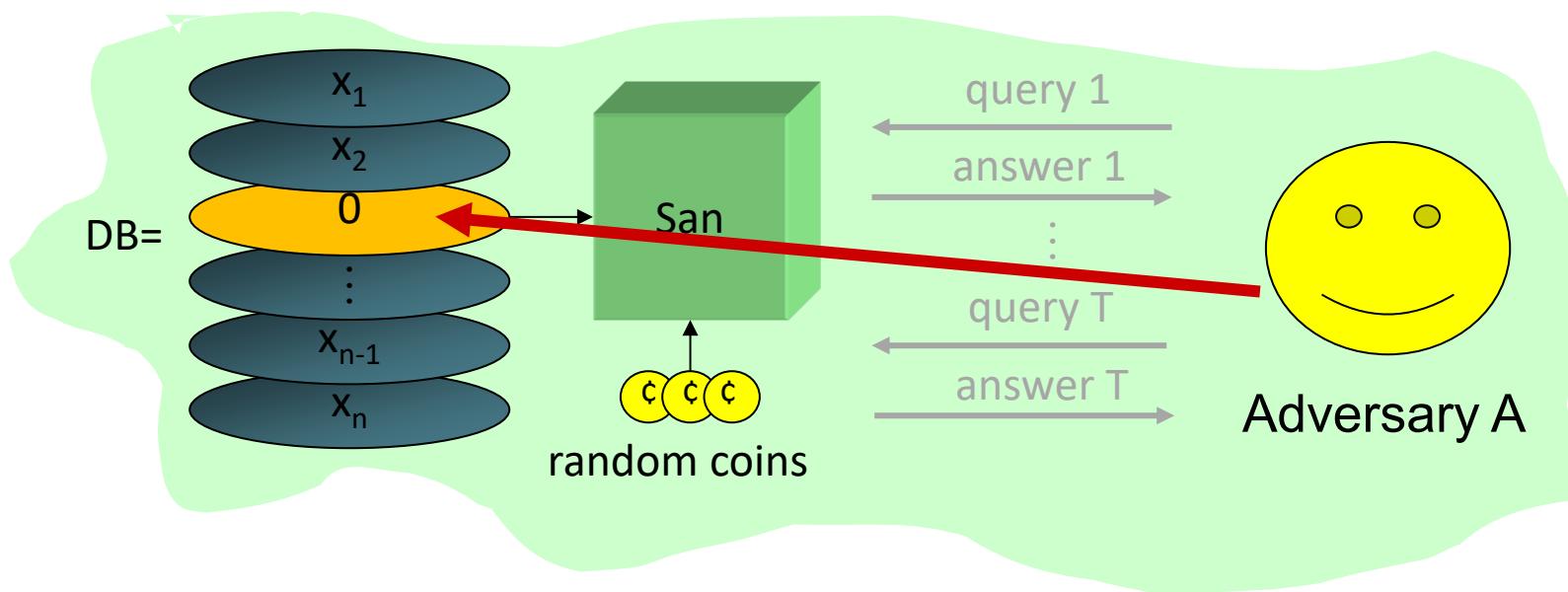
- Game 0: Adv. interacts with $San(DB)$
- Game i : Adv. interacts with $San(DB_{-i})$; $DB_{-i} = (x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$

Differential Privacy (2)



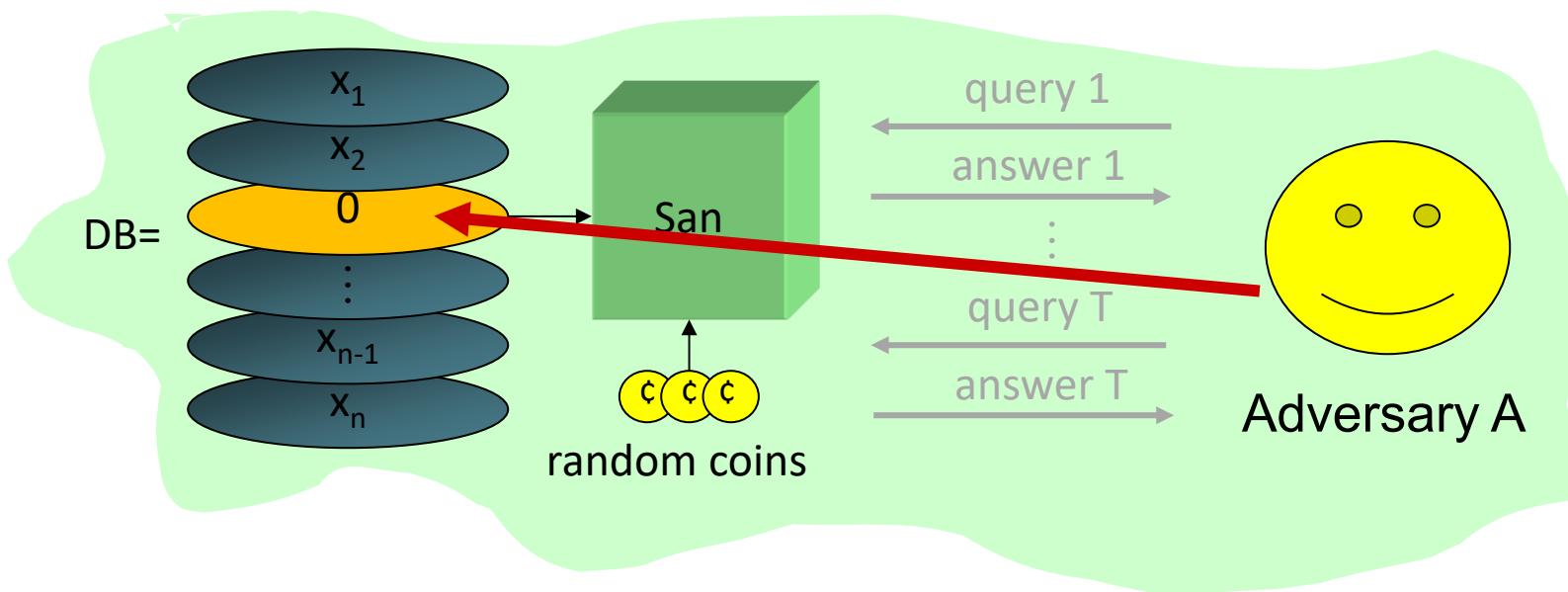
- Define $n+1$ games
 - Game 0: Adv. interacts with $\text{San}(DB)$
 - Game i : Adv. interacts with $\text{San}(DB_{-i})$; $DB_{-i} = (x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$
- Given S and prior $p()$ on DB , define $n+1$ posterior distributions
$$p_i(DB|S) = p(DB|S \text{ in Game } i) = \frac{p(\text{San}(DB_{-i}) = S) \times p(DB)}{p(S \text{ in Game } i)}$$

Differential Privacy (3)



Definition: San is safe if

Differential Privacy (3)

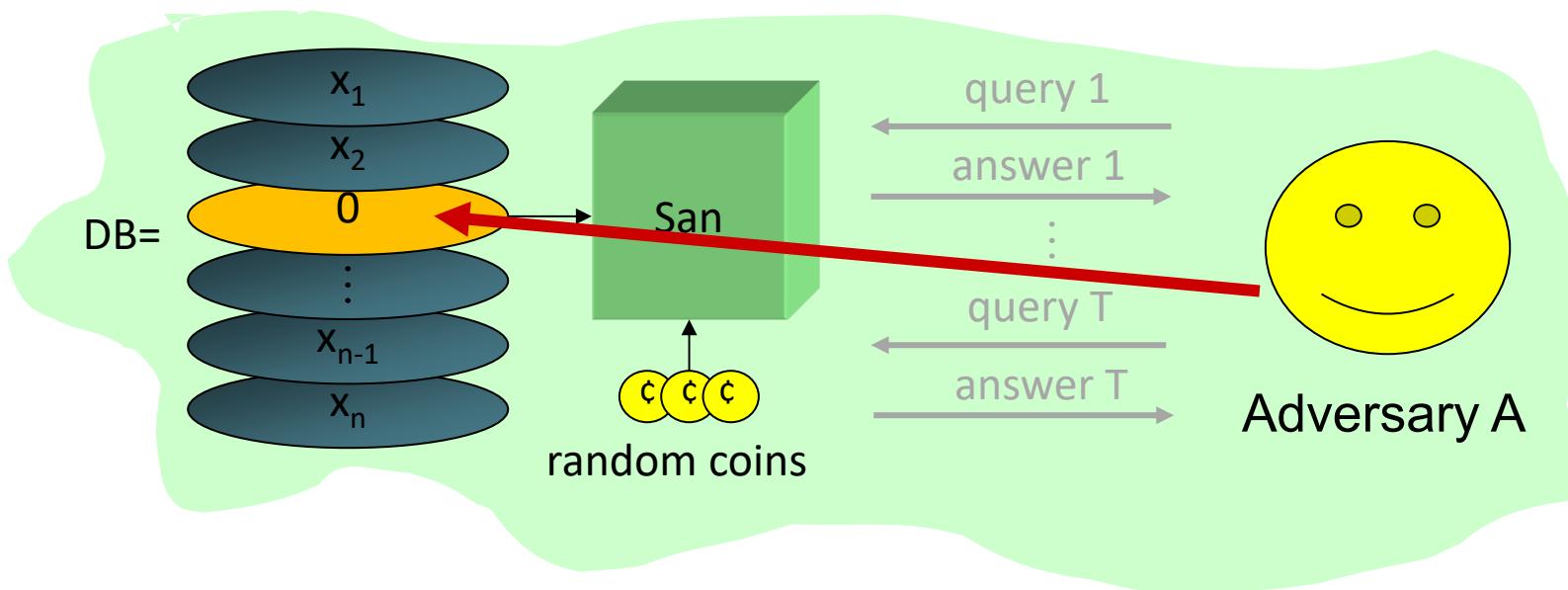


Definition: San is safe if

\forall prior distributions $p(\zeta)$ on DB,

\forall transcripts $S, \forall i = 1, \dots, n$

Differential Privacy (3)



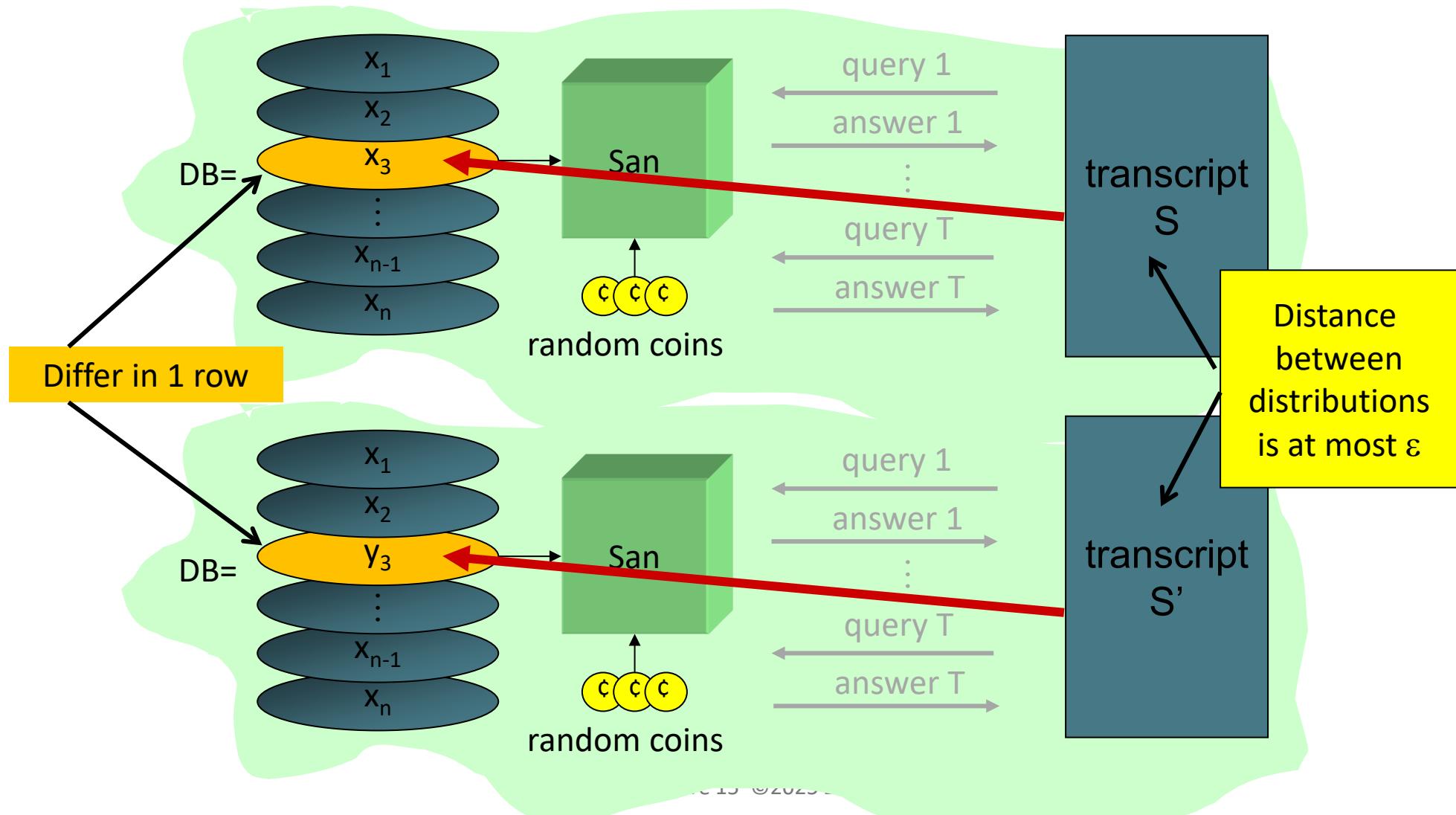
Definition: San is safe if

\forall prior distributions $p(\zeta)$ on DB,

\forall transcripts S , $\forall i = 1, \dots, n$

$$\text{StatDiff}(p_0(\zeta|S), p_i(\zeta|S)) \leq \epsilon$$

Indistinguishability



Which Distance to Use?

- Problem: ε must be large
 - Any two databases induce transcripts at distance $\leq n\varepsilon$
 - To get utility, need $\varepsilon > 1/n$
- Statistical difference $1/n$ is not meaningful!
- Example: release random point in database
 - $\text{San}(x_1, \dots, x_n) = (j, x_j)$ for random j
- For every i , changing x_i induces statistical difference $1/n$

(re)Formalizing Indistinguishability

Definition: San is ε -indistinguishable if

$\forall A, \forall \underline{DB}, \underline{DB}'$ which differ in 1 row, \forall sets of transcripts S

$$p(\text{San}(\underline{DB}) \in S) \leq (1 \pm \varepsilon) p(\text{San}(\underline{DB}') \in S)$$

Equivalently, $\forall S:$
$$\frac{p(\text{San}(\underline{DB}) = S)}{p(\text{San}(\underline{DB}') = S)} \leq 1 \pm \varepsilon$$

Indistinguishability -> Differential Privacy

Definition: San is safe if

\forall prior distributions $p(\mathbf{c})$ on DB,

\forall transcripts S , $\forall i = 1, \dots, n$

$$\text{StatDiff}(p_0(\mathbf{c}|S) , p_i(\mathbf{c}|S)) \leq \varepsilon$$

Indistinguishability -> Differential Privacy

Definition: San is safe if

\forall prior distributions $p(\mathbf{c})$ on DB,

\forall transcripts S , $\forall i = 1, \dots, n$

$$\text{StatDiff}(p_0(\mathbf{c}|S), p_i(\mathbf{c}|S)) \leq \varepsilon$$

$$p_i(DB|S) = p(DB|S \text{ in Game } i) = \frac{p(San(DB_{-i}) = S) \times p(DB)}{p(S \text{ in Game } i)}$$

Indistinguishability -> Differential Privacy

Definition: San is safe if

\forall prior distributions $p(\mathbf{c})$ on DB,

\forall transcripts S , $\forall i = 1, \dots, n$

$$\text{StatDiff}(p_0(\mathbf{c}|S), p_i(\mathbf{c}|S)) \leq \varepsilon$$

$$p_i(DB|S) = p(DB|S \text{ in Game } i) = \frac{p(San(DB_{-i}) = S) \times p(DB)}{p(S \text{ in Game } i)}$$

For every S and DB, indistinguishability implies

Indistinguishability -> Differential Privacy

Definition: San is safe if

\forall prior distributions $p(\mathbf{c})$ on DB,

\forall transcripts S , $\forall i = 1, \dots, n$

$$\text{StatDiff}(p_0(\mathbf{c}|S), p_i(\mathbf{c}|S)) \leq \varepsilon$$

$$p_i(DB|S) = p(DB|S \text{ in Game } i) = \frac{p(San(DB_{-i}) = S) \times p(DB)}{p(S \text{ in Game } i)}$$

For every S and DB, indistinguishability implies

$$\frac{p_i(DB|S)}{p_0(DB|S)} = \frac{p(San(DB_{-i}) = S)}{p(San(DB) = S)} \times \frac{p(S \text{ in Game 0})}{p(S \text{ in Game } i)} \approx 1 \pm 2\epsilon$$

Indistinguishability -> Differential Privacy

Definition: San is safe if

\forall prior distributions $p(\mathbf{c})$ on DB,

\forall transcripts S , $\forall i = 1, \dots, n$

$$\text{StatDiff}(p_0(\mathbf{c}|S) , p_i(\mathbf{c}|S)) \leq \varepsilon$$

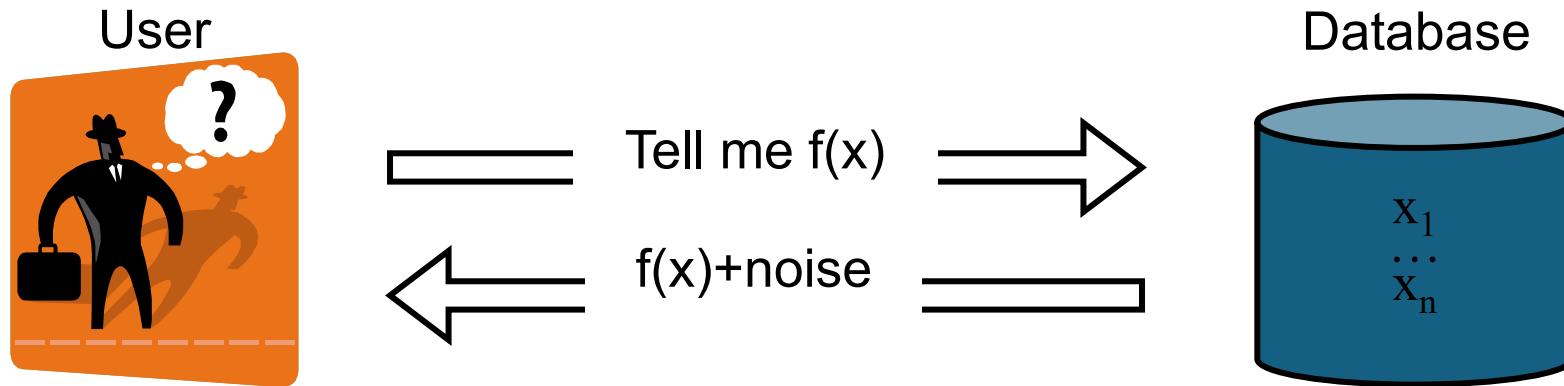
$$p_i(DB|S) = p(DB|S \text{ in Game } i) = \frac{p(San(DB_{-i}) = S) \times p(DB)}{p(S \text{ in Game } i)}$$

For every S and DB, indistinguishability implies

$$\frac{p_i(DB|S)}{p_0(DB|S)} = \frac{p(San(DB_{-i}) = S)}{p(San(DB) = S)} \times \frac{p(S \text{ in Game 0})}{p(S \text{ in Game } i)} \approx 1 \pm 2\epsilon$$

This implies $\text{StatDiff}(p_0(\mathbf{c}|S) , p_i(\mathbf{c}|S)) \leq \varepsilon$

Differential Privacy in Output Perturbation



- Intuition: $f(x)$ can be released accurately when f is insensitive to individual entries x_1, \dots, x_n
- Global sensitivity $GS_f = \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|_1$
 - Example: $GS_{\text{average}} = 1/n$ for sets of bits
- Theorem: $f(x) + \text{Lap}(GS_f / \varepsilon)$ is ε -indistinguishable
 - Noise generated from Laplace distribution

Sensitivity with Laplace Noise

Theorem

If $A(x) = f(x) + \text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$ then A is ε -indistinguishable.

Sensitivity with Laplace Noise

Theorem

If $A(x) = f(x) + \text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$ then A is ε -indistinguishable.

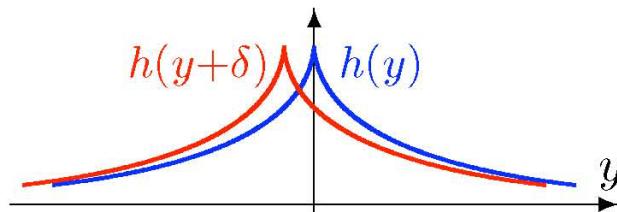
Laplace distribution $\text{Lap}(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$

Sensitivity with Laplace Noise

Theorem

If $A(x) = f(x) + \text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$ then A is ε -indistinguishable.

Laplace distribution $\text{Lap}(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$

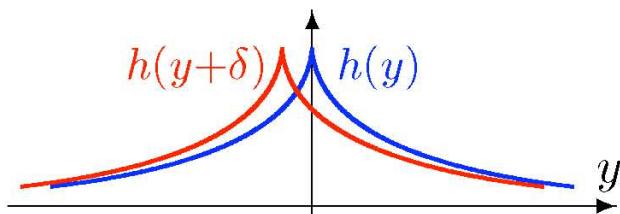


Sensitivity with Laplace Noise

Theorem

If $A(x) = f(x) + \text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$ then A is ε -indistinguishable.

Laplace distribution $\text{Lap}(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$



Sliding property of $\text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$: $\frac{h(y)}{h(y+\delta)} \leq e^{\varepsilon \cdot \frac{\|\delta\|}{\text{GS}_f}}$ for all y, δ

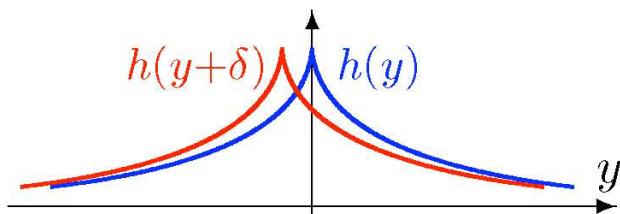
Proof idea: $A(x)$: blue curve

Sensitivity with Laplace Noise

Theorem

If $A(x) = f(x) + \text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$ then A is ε -indistinguishable.

Laplace distribution $\text{Lap}(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$



Sliding property of $\text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$: $\frac{h(y)}{h(y+\delta)} \leq e^{\varepsilon \cdot \frac{\|\delta\|}{\text{GS}_f}}$ for all y, δ

Proof idea:

$A(x)$: blue curve

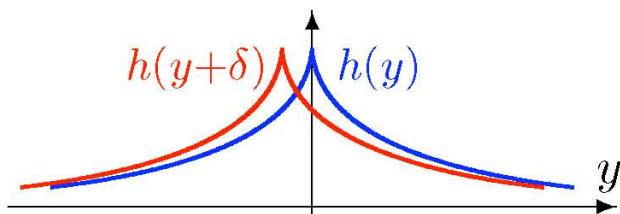
$A(x')$: red curve

Sensitivity with Laplace Noise

Theorem

If $A(x) = f(x) + \text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$ then A is ε -indistinguishable.

Laplace distribution $\text{Lap}(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$



Sliding property of $\text{Lap}\left(\frac{\text{GS}_f}{\varepsilon}\right)$: $\frac{h(y)}{h(y+\delta)} \leq e^{\varepsilon \cdot \frac{\|\delta\|}{\text{GS}_f}}$ for all y, δ

Proof idea:

$A(x)$: blue curve

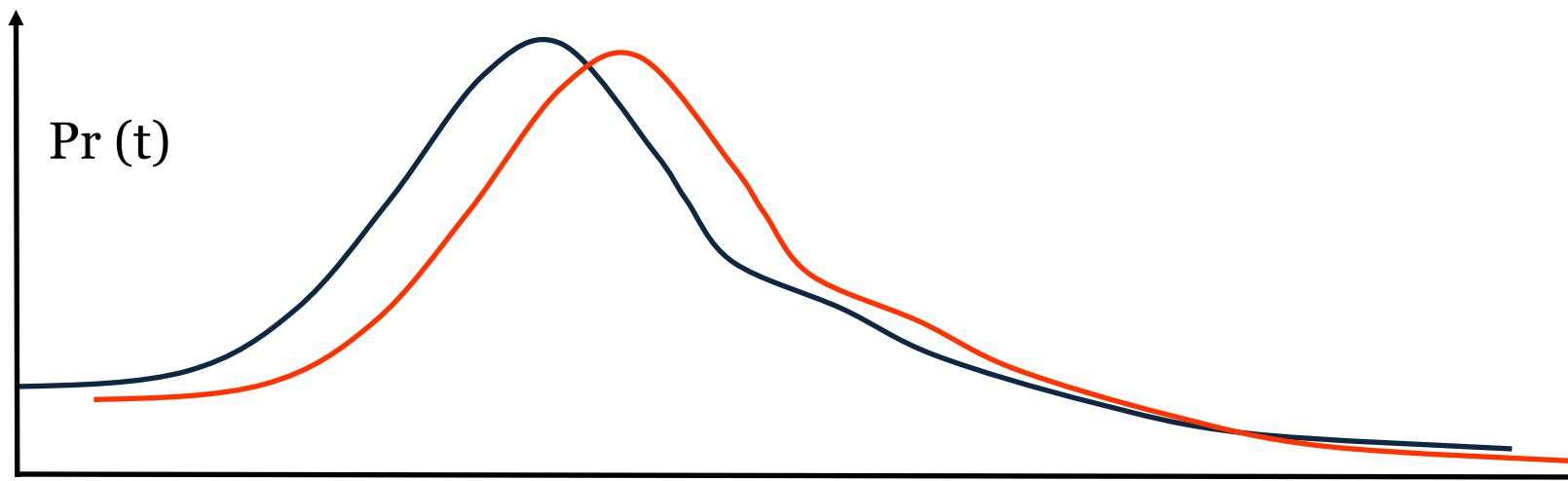
$A(x')$: red curve

$$\delta = f(x) - f(x') \leq \text{GS}_f$$

Differential Privacy: Summary

- San gives ε -differential privacy if for all values of DB and Me and all transcripts t :

$$\frac{\Pr(\text{San(DB - Me)} = t)}{\Pr(\text{San(DB + Me)} = t)} \leq e^\varepsilon \approx 1 \pm \varepsilon$$



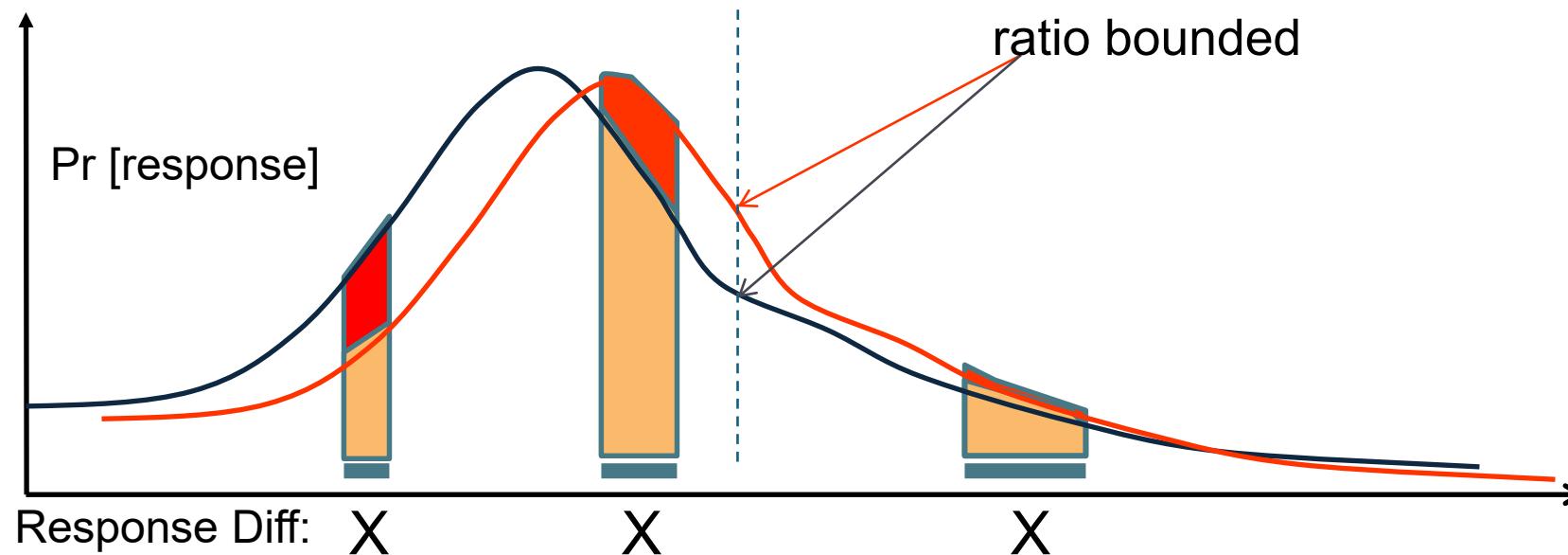
Differential Privacy

No perceptible risk is incurred by joining DB

Anything adversary can do to me, it could do without me (my data)

Neutralizes all linkage attacks.

Composes unconditionally and automatically: $\sum_i \epsilon_i$



Access Control

- Security Rule
- Pillars of Security
- Variations of Access Control

HIPAA – Data Protection

PRIVACY RULE (2002)

Dept of Health & Human Services. Standards for privacy of individually identifiable health information; Final Rule. Federal Register. 45 CFR: Pt 160 and 164.

SECURITY RULE (2003)

Dept of Health & Human Services. Standards for the Protection of Electronic Health Information; Final Rule. Federal Register. 45 CFR: Pt 164.

HIPAA Security Rule

- Administrative Safeguards
- Physical Safeguards
- **Technical Safeguards**
- Organizational Requirements

<http://www.cms.hhs.gov/SecurityStandard/>

Administrative Safeguards

Standards	Implementation Specification	Required vs. Addressable
Security Management Process	Risk Analysis	R
	Risk Management	R
	Sanction Policy	R
	Information System Activity Review	R
Assigned Security Responsibility		R
Workforce Security	Authorization and/or Supervision	A
	Workforce Clearance Procedure	A
	Termination Procedures	A
Information Access Management	Isolating Healthcare Clearinghouse Function	R
	Access Authorization	A
	Access Establishment and Modification	A
Security Awareness & Training	Security Reminders	A
	Protection from Malicious Software	A
	Log-in Monitoring	A
Security Incident Procedures	Response and Reporting	R
Contingency Plan	Data Backup Plan	R
	Disaster Recovery Plan	R
	Emergency Mode Operation Plan	R

Physical Safeguards

Standards	Implementation Specification	Required vs. Addressable
Facility Access Controls	Contingency Operations	A
	Facility Security Plan	A
	Access Control and Validation Procedures	A
	Maintenance Records	A
Workstation Use		R
Workstation Security		R
Device & Media Controls	Disposal	R
	Media Reuse	R
	Accountability	A
	Data Backup & Storage	A

Technical Safeguards

Standards	Implementation Specification	<u>Required</u> vs. <u>Addressable</u>
Access Control	Unique User Identification	R
	Emergency Access Procedure	R
	Automatic Logoff	A
	Encryption and Decryption	A
Audit Controls		R
Integrity	Mechanism to Authenticate ePHI	A
Person or Entity Authentication		R
Transmission Security	Integrity Controls	A
	Encryption	A

Three Pillars of Security

Least Privilege

Separation of
Duties

Data
Abstraction

Least Privilege

User should be provided with no more privileges than are necessary to perform their job

Separation of Duties

Requirement for multiple types of individuals to complete a task

Data Abstraction

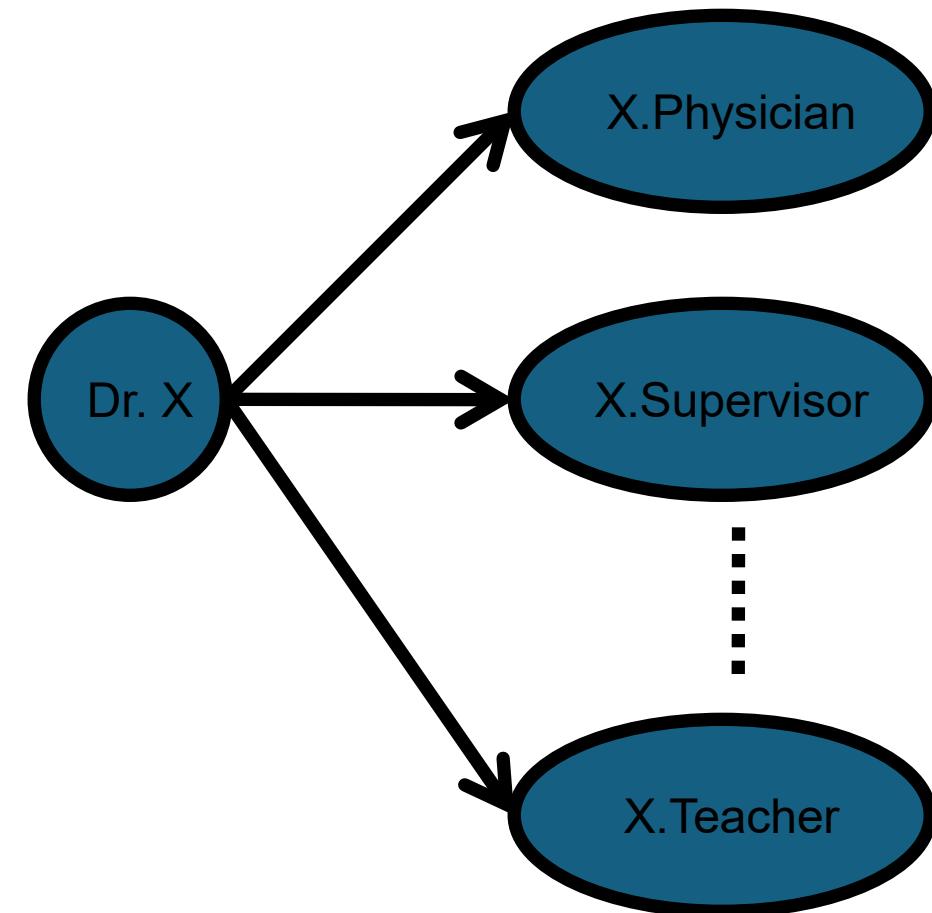
Permissions are related to the type of data being handled

Access Control – What to Control?

- Subjects S (or Users)
- Objects O (or Patients)
- Rights R
 - Read from Record
 - Write to Record
 - Issue Order
 - Request Consult
- Could specialize to “type” of information
 - demographics
 - diagnoses
 - treatments

Subjects & Principals

- One-to-many mapping of subjects to principals
- Intention is to ensure *accountability* for one's actions



Many Variations

- **Access Matrix (AM)**
- Mandatory Access Control (MAC)
- Discretionary Access Control (DAC)
- Role-Based Access Control (RBAC)

Abstraction of Access Control

(Lampson 1971)

- A right is a relation for subjects and objects

$$r(s,o) \subseteq \text{Rel}$$

- Specification of which **rights** can be invoked by which **subject** for which **object**

Access Matrix

		Object		
Subject	A	B	C	
Dr. D	$R-X$	RWX	RWX	
Nurse E	$R-X$	RWX	$R-X$	
Biller F	$R--$	$R--$	$R--$	

$r(\text{Dr. D, C}) = \{R, W, X\}$

How to Use an Access Matrix

- Can allow for dynamic protections
 - Operations for assignment & revocation of rights
- Can permit “special” rights:
 - Ownership of object
 - Copy of object
 - Control of rights modification for object
 - ...

Views on the Matrix

- Access Control List (ACL)
 - For a single object
 - Indicates which subject can invoke which right

Subject	Object A
Dr. D	R, X
Nurse E	R, X
Biller F	R

Views on the Matrix

- Capability List
 - For a single subject
 - Indicates which rights can be invoked by the subject across objects which right

	Object		
Subject	A	B	C
Dr. D	R, X	R, W, X	R, W, X

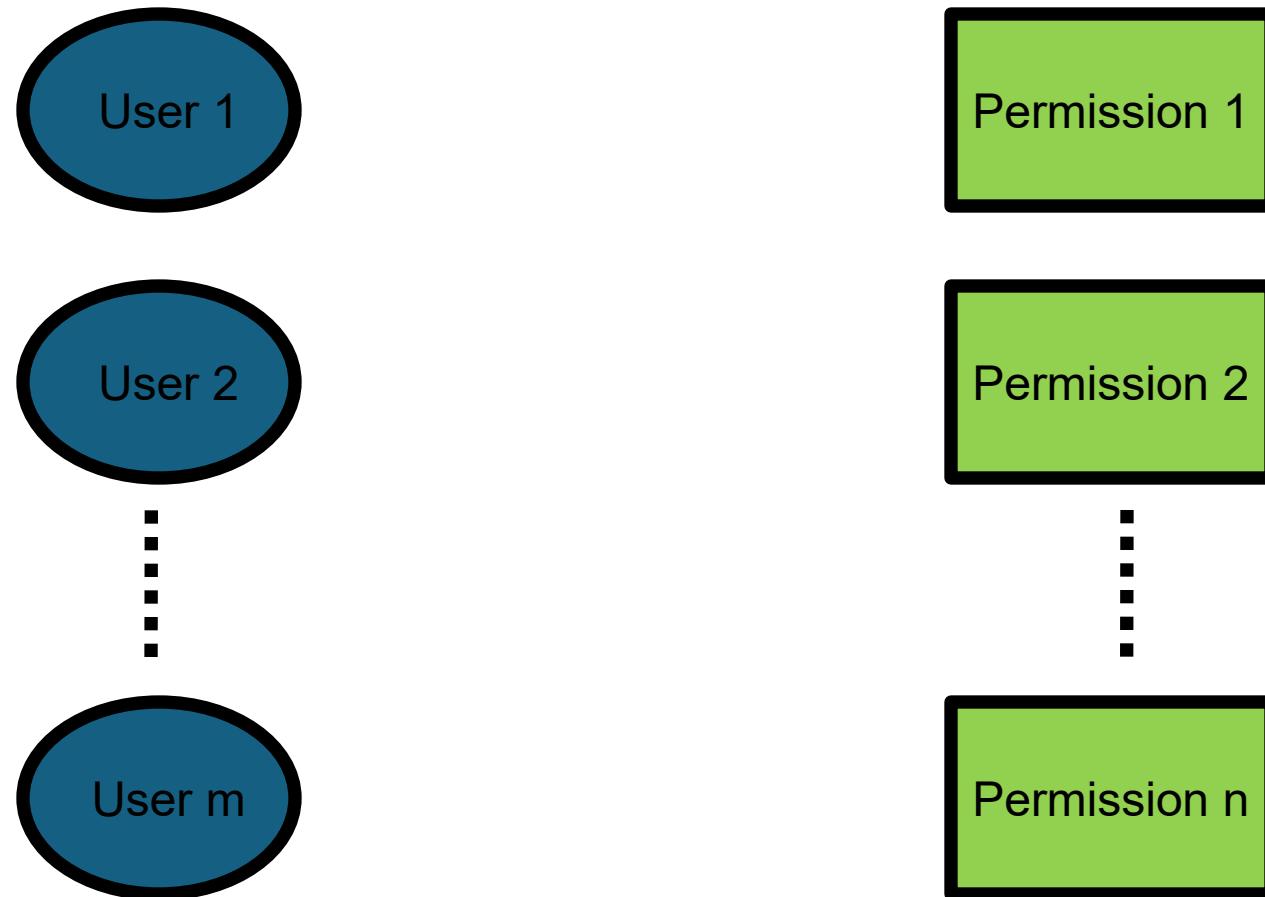
Many Variations

- Access Matrix (AM)
- **Mandatory Access Control (MAC)**
- **Discretionary Access Control (DAC)**
- Role-Based Access Control (RBAC)

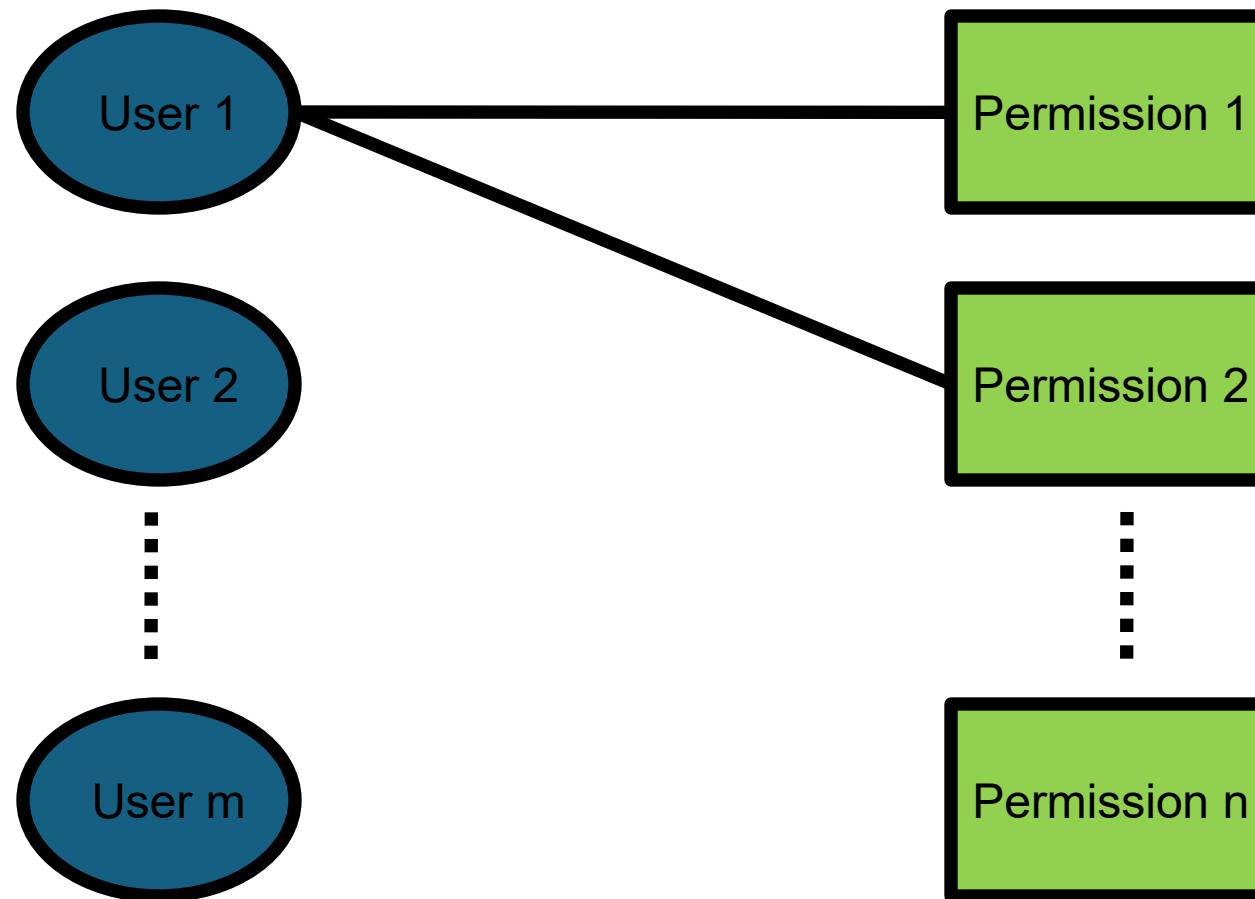
Mandatory vs. Discretionary

- Mandatory access controls (MAC) restrict the access of subjects to objects on the basis of “security” labels
- Discretionary access controls (DAC) permits access rights to be propagated from one subject to another
 - Possession of an access right by a subject is sufficient to allow access to the object

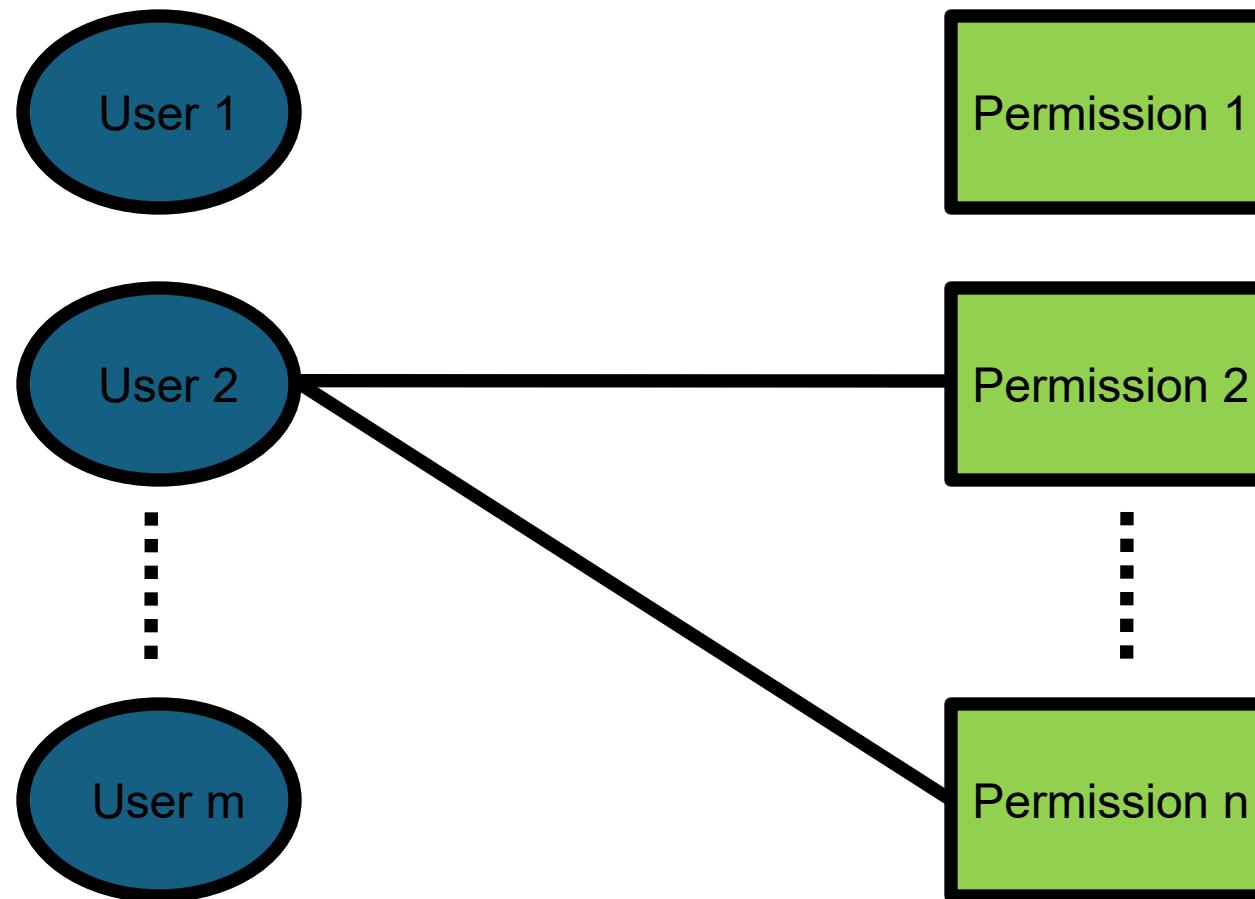
Take a Step Back



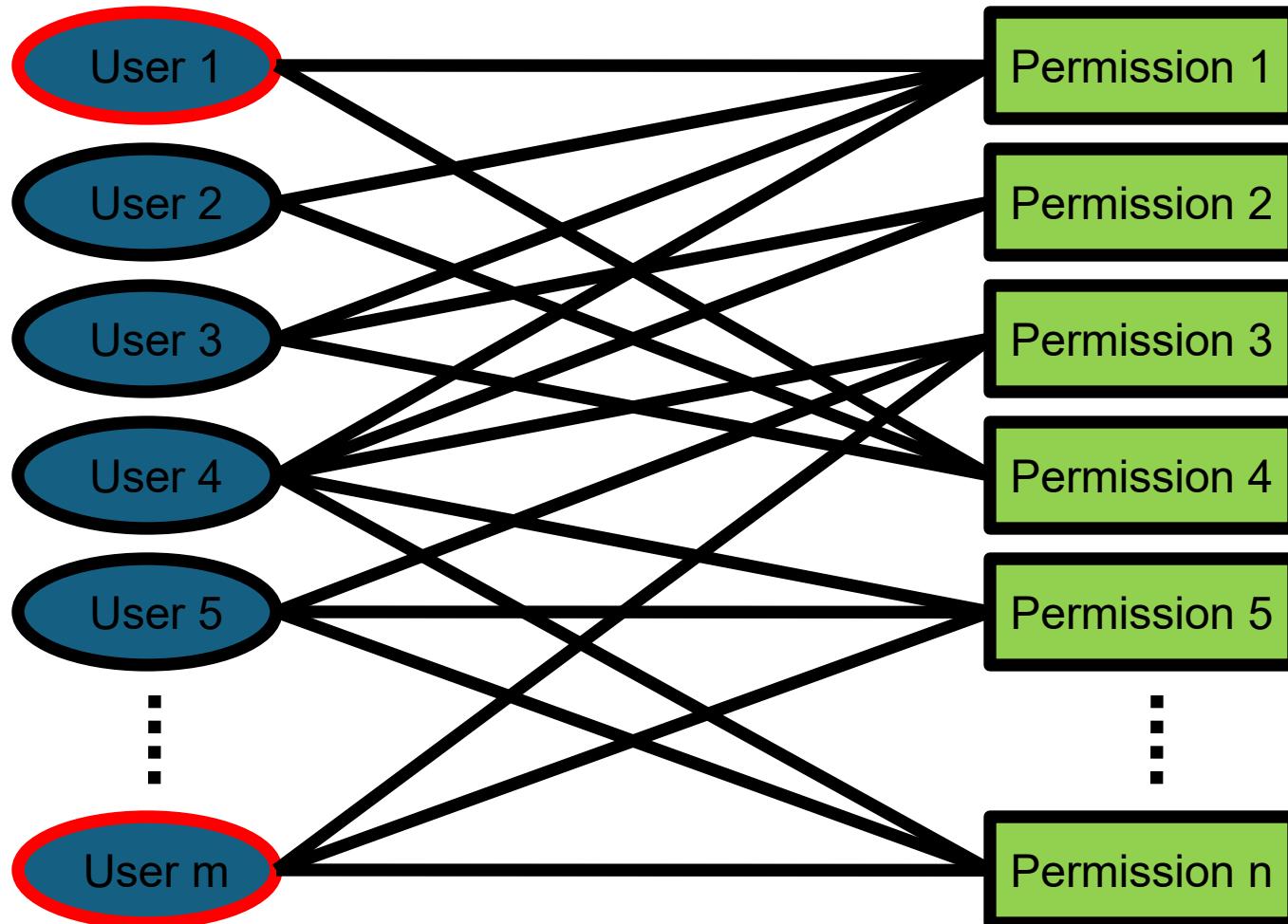
Rights (or Permission) Assignment



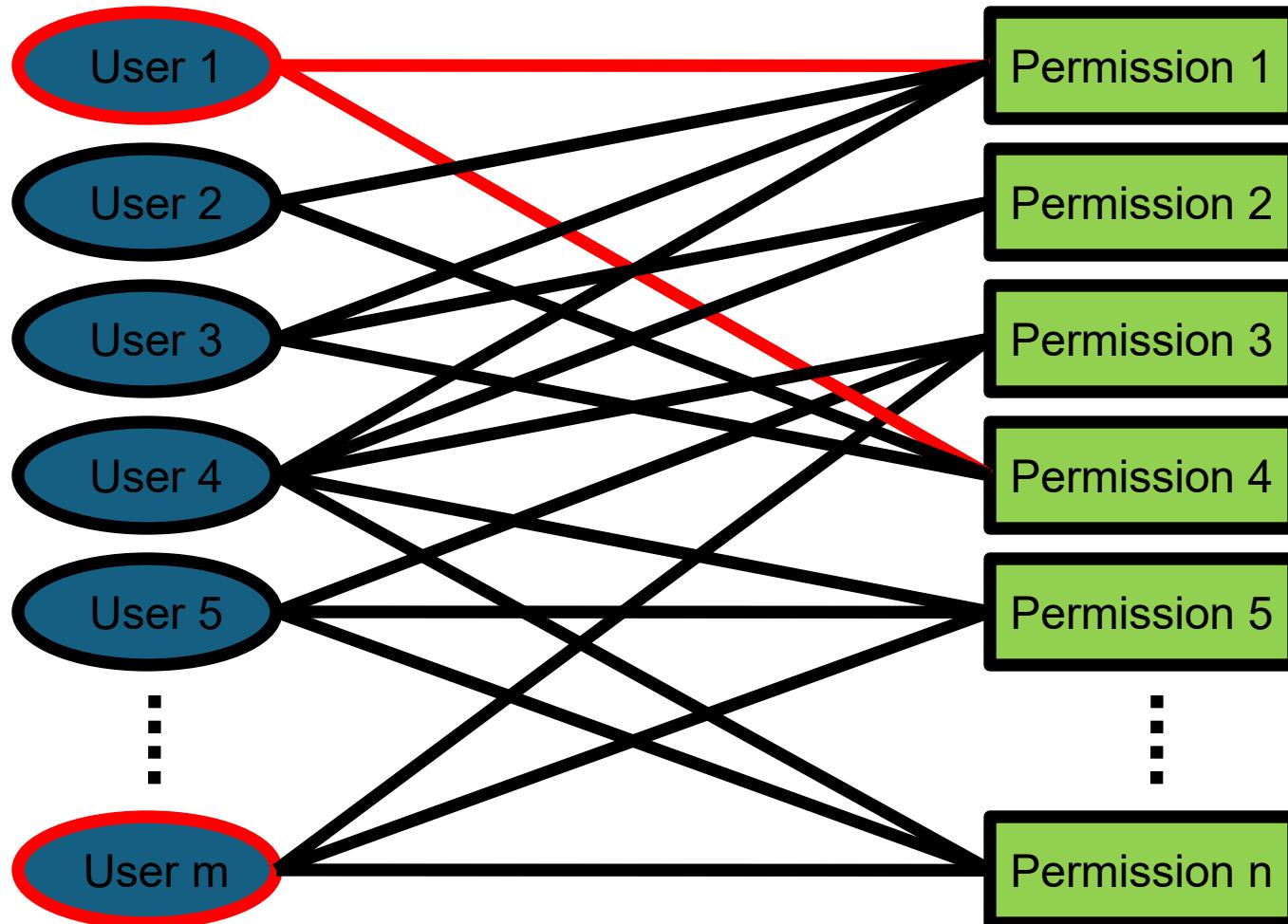
Rights (or Permission) Assignment



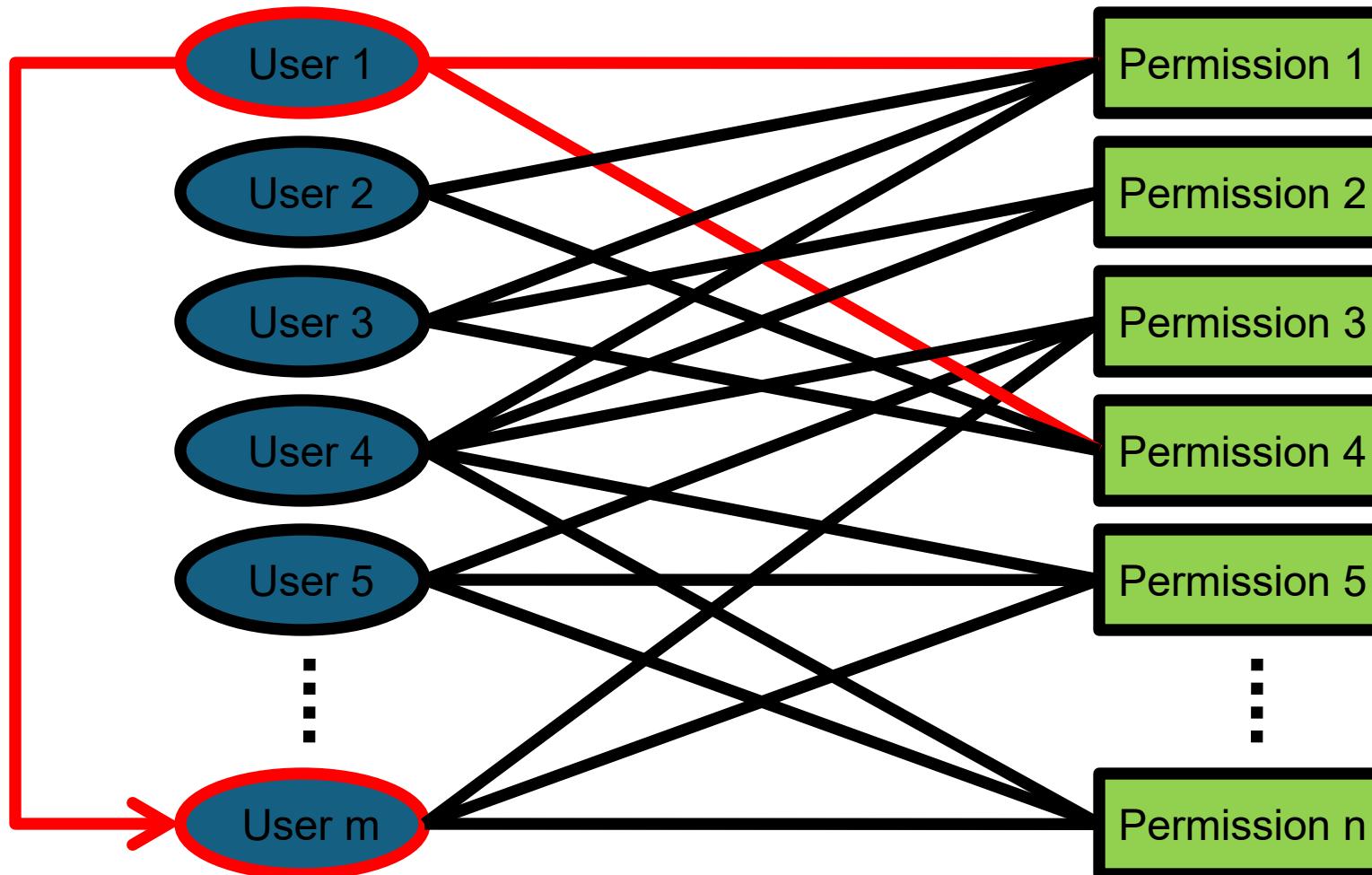
Delegation



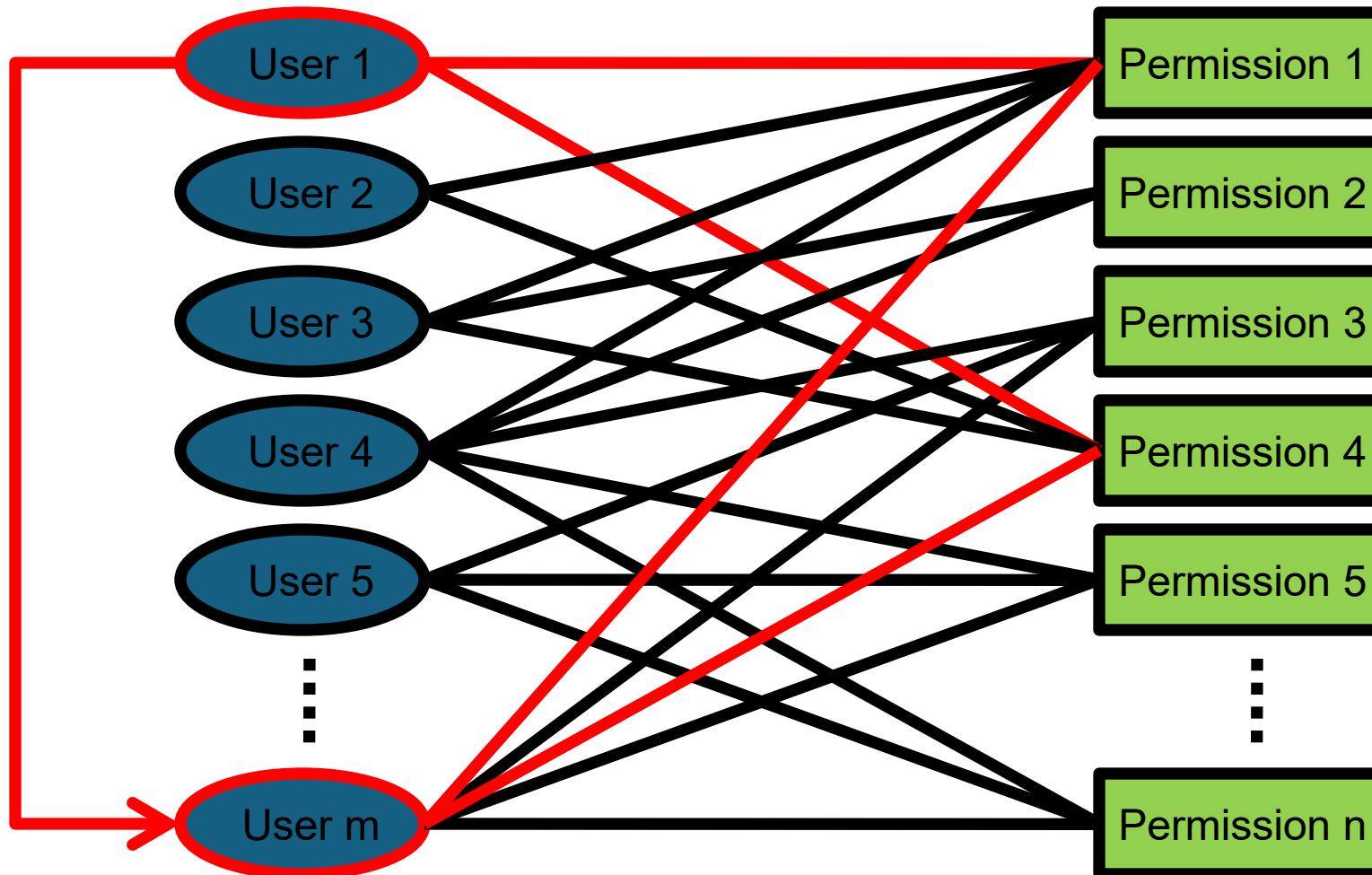
Delegation



Delegation



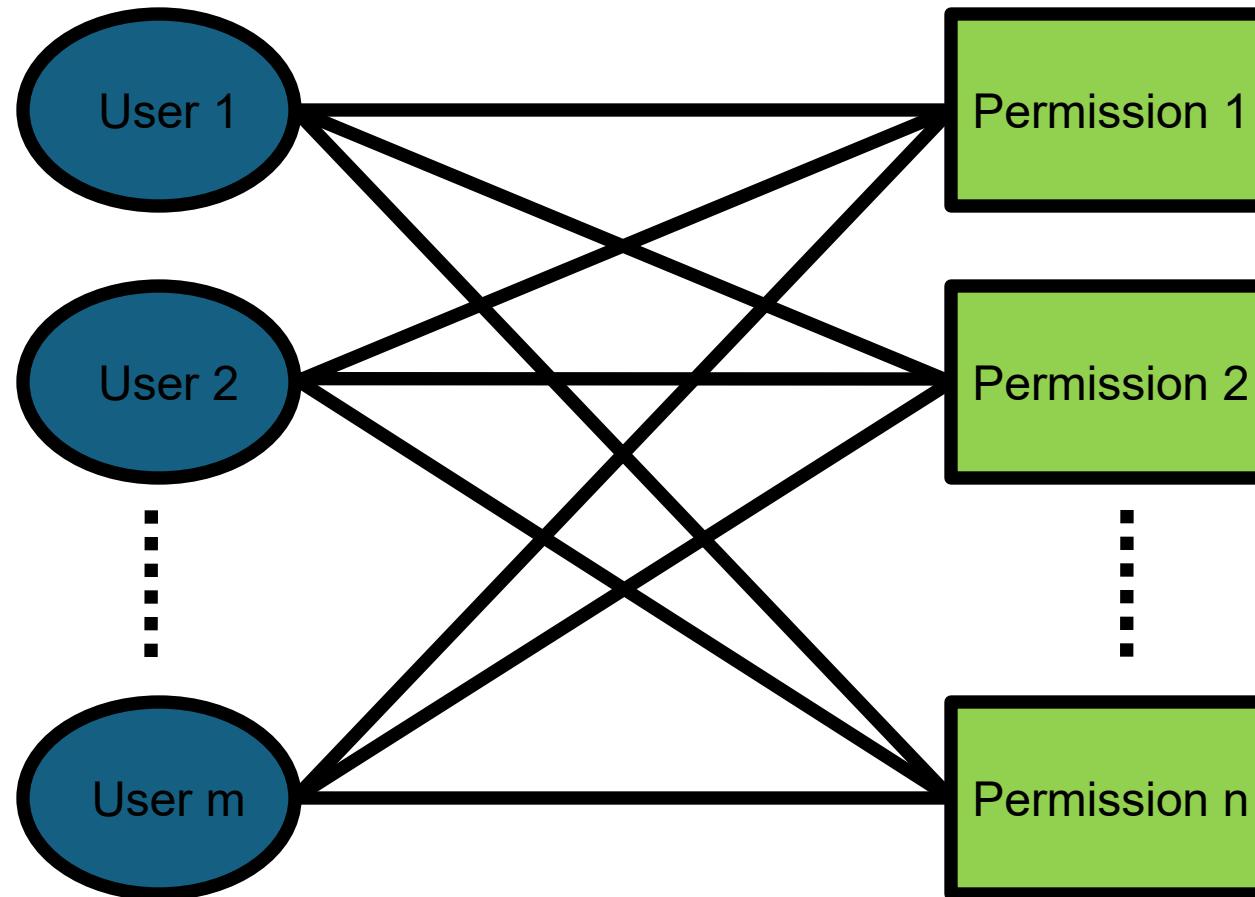
User-Permission Relation via Transitivity



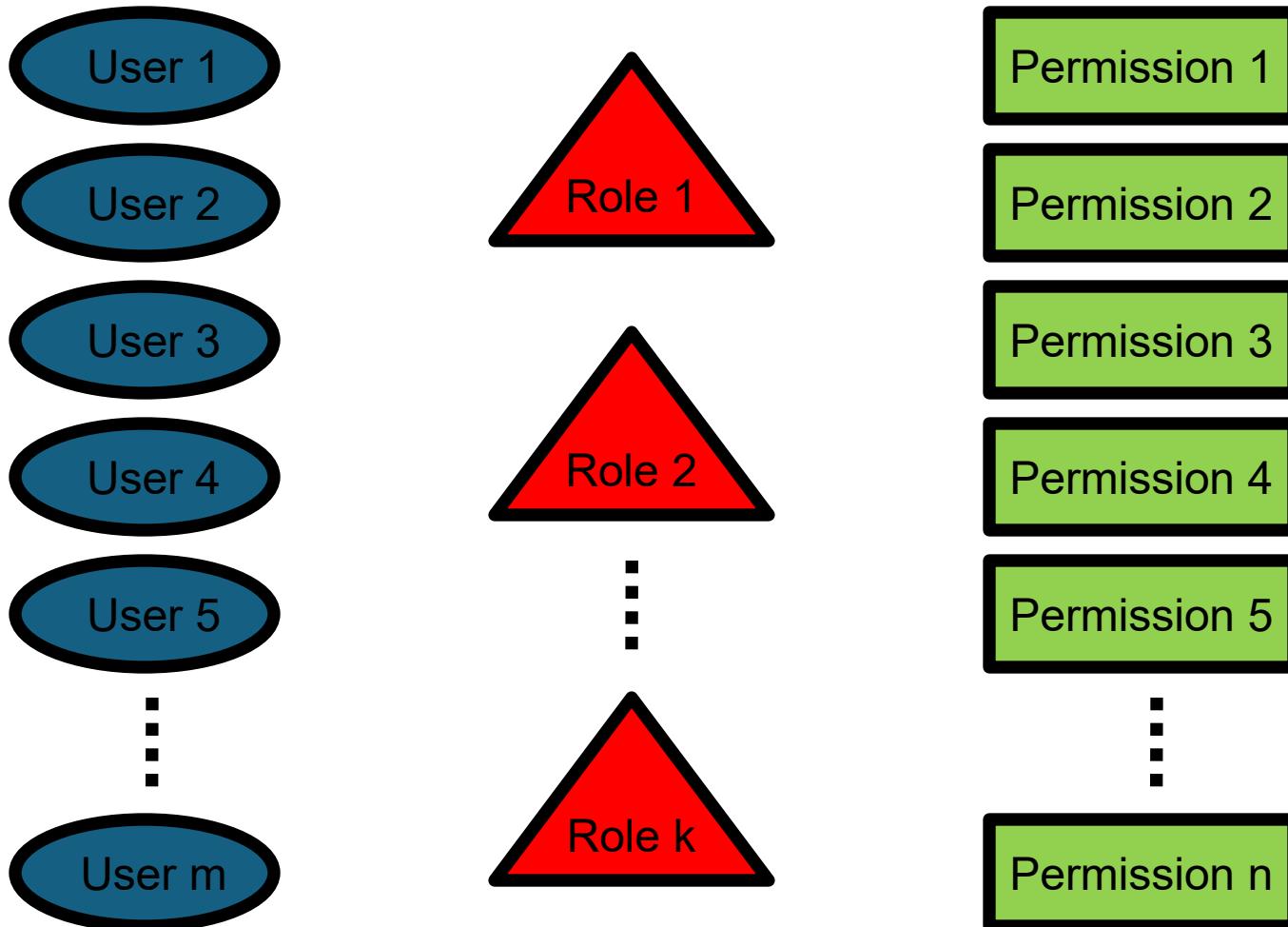
Many Variations

- Access Matrix (AM)
- Mandatory Access Control (MAC)
- Discretionary Access Control (DAC)
- **Role-Based Access Control (RBAC)**

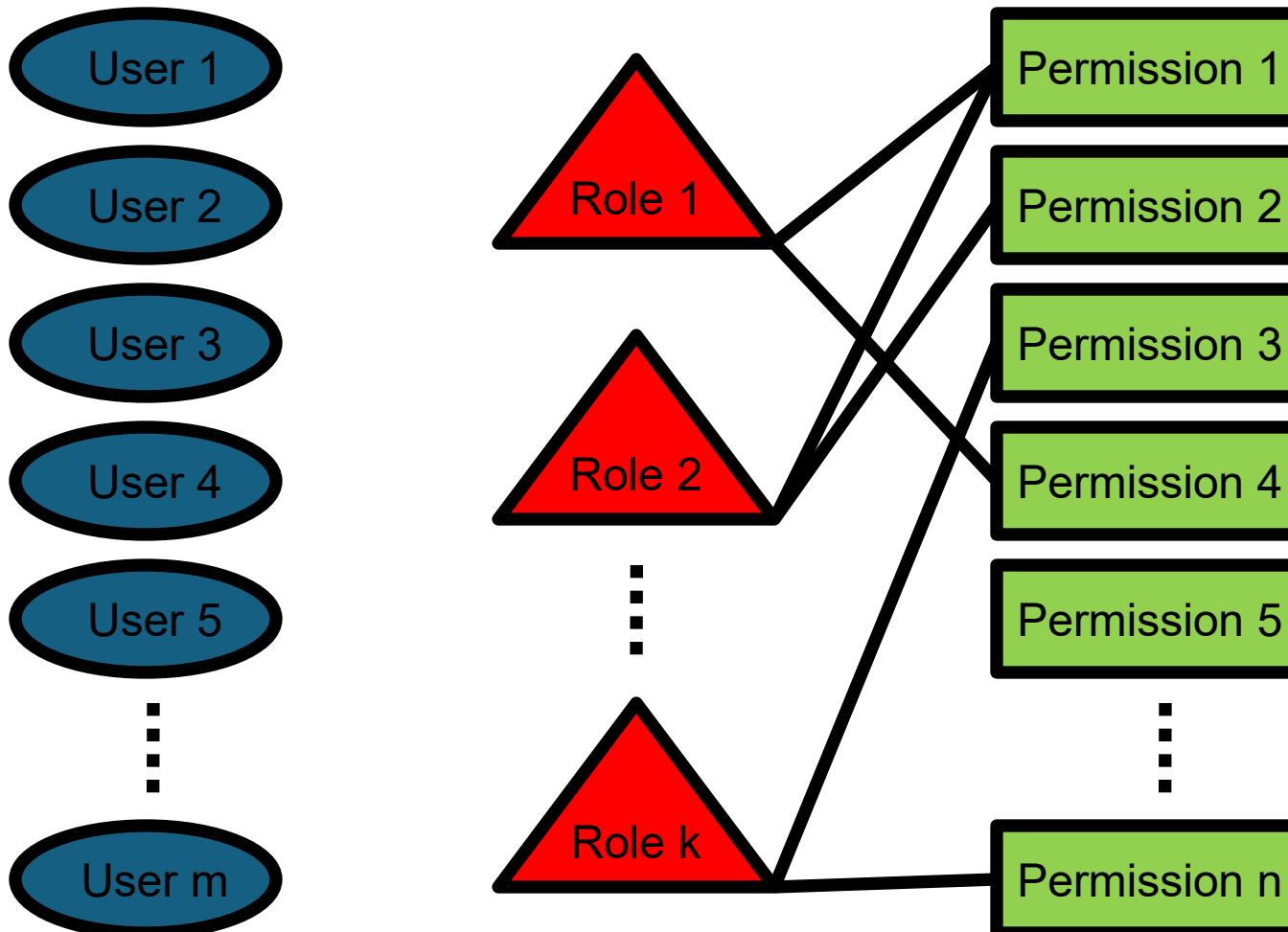
Many Potential Assignments



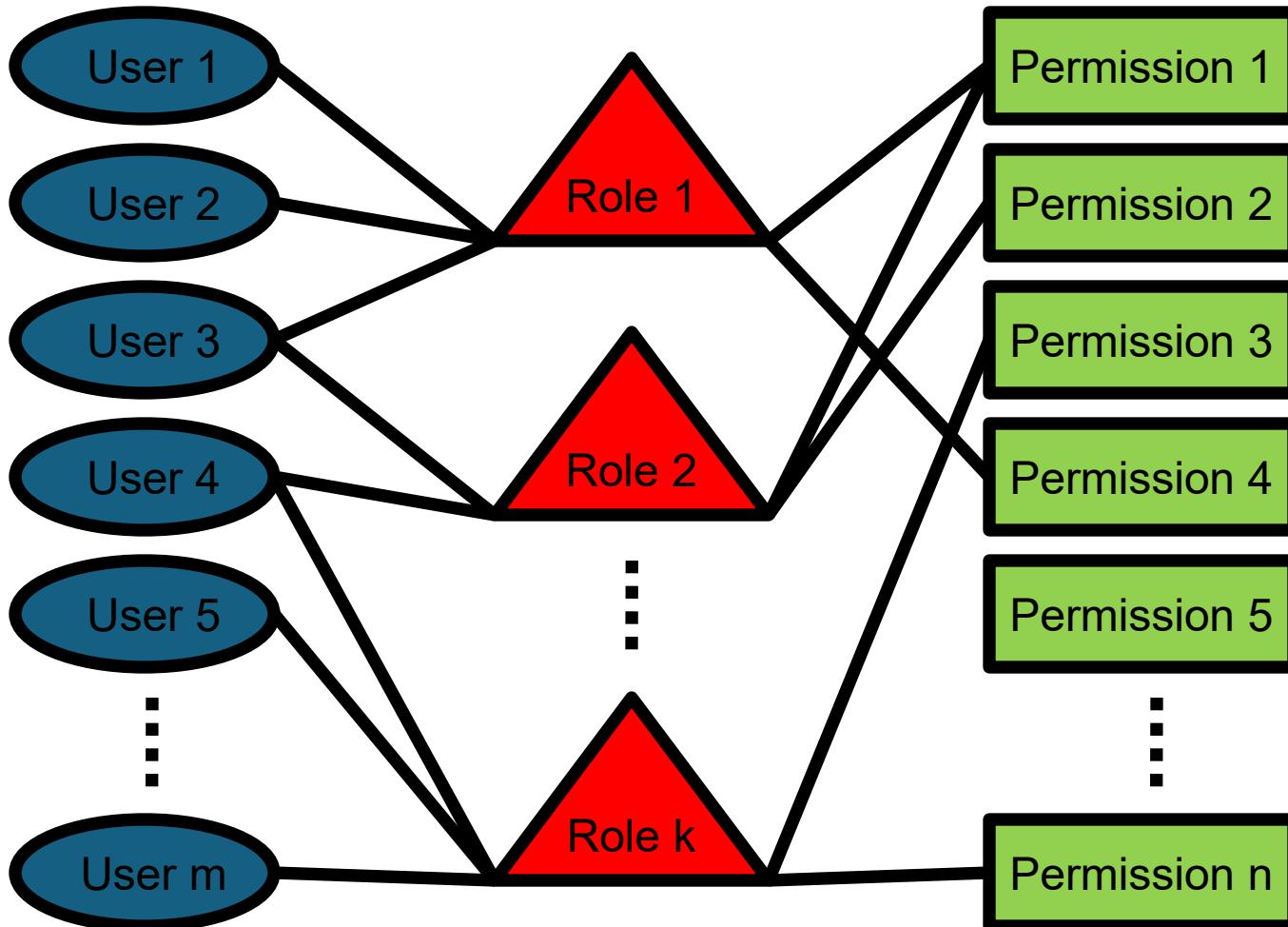
Role-Based Access Control (RBAC)



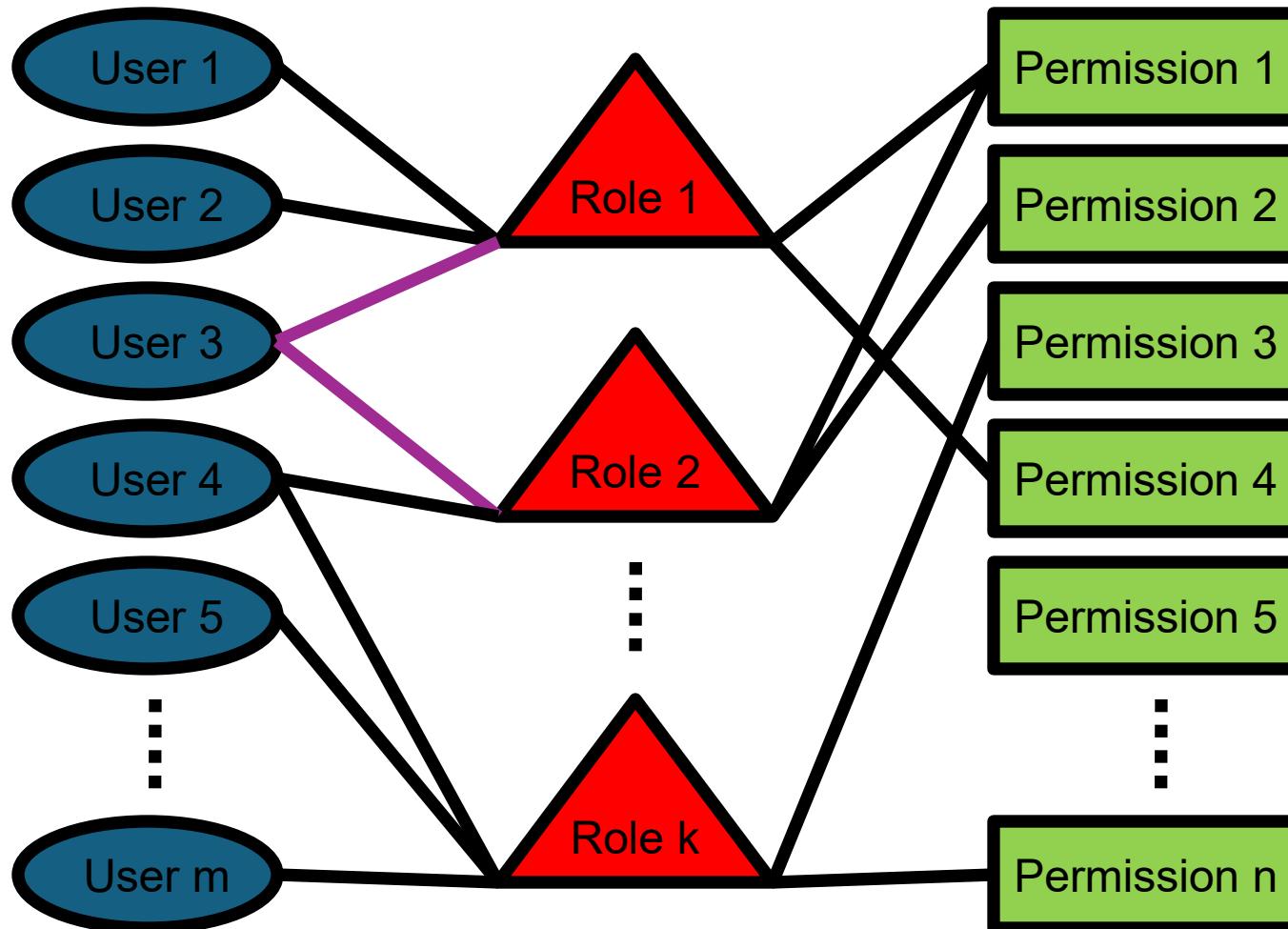
Role-Based Access Control (RBAC)



Can Map Users to Roles



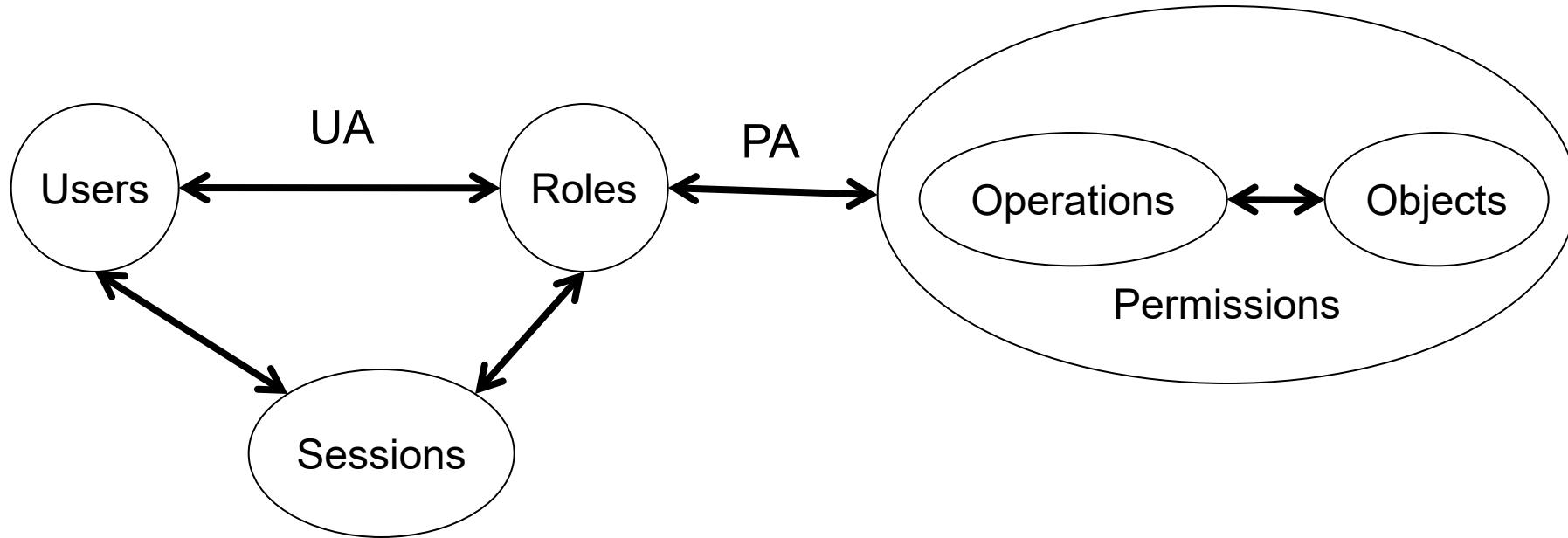
Users can Have Multiple Roles!



A Formal RBAC System

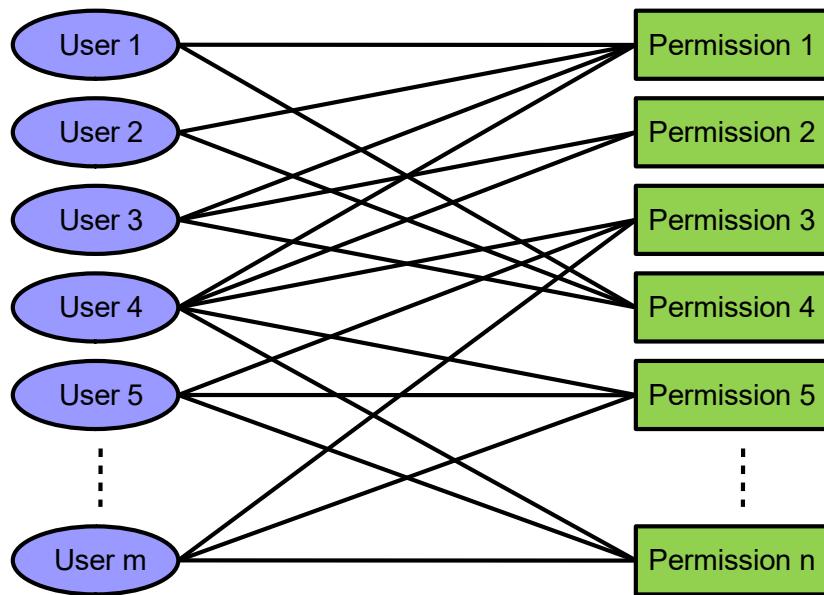
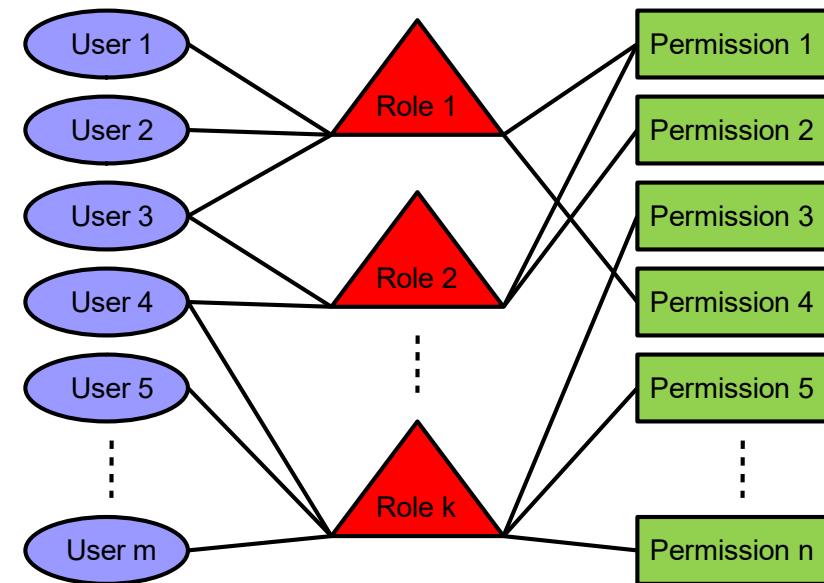
- Defined over the following principals
 - U : user set
 - R : role set
 - P : permission set
 - S : session set (not always used)
- Relations
 - $UA \subseteq U \times R$ (which users belong to which roles)
 - $PA \subseteq P \times R$ (which permissions belong to which roles)
 - Note: Permissions are positive (not negative) statements
- Functions
 - User: $S \rightarrow U$ (e.g., session s_i belongs to user u_j)
 - Roles: $S \rightarrow 2^{|R|}$ (mapping of each session to set of roles)

“Core” RBAC Framework



- Notice: permissions are often partitioned into Operations & Objects

Does RBAC Help?



RBAC in Practice

- Various database management systems (DBMS)*
- Enterprise Security Management
 - Take a look at the IBM Security Identity Governance and Intelligence (IGI)
 - <https://www.ibm.com/us-en/marketplace/identity-governance-and-intelligence>
- Various operating systems use RBAC in a limited way (think groups and rights)

Readings for the Next Week

- 1. Kantarcioglu M, Jiang W, Liu Y, Malin B. **A cryptographic approach to securely share and query genomic sequences.** *IEEE Transactions on information technology in biomedicine*. 2008 Sep 3;12(5):606-17.
<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4358920>
- Optional
 - 2. Jha S, Kruger L, Shmatikov V. **Towards practical privacy for genomic computation.** In *2008 IEEE Symposium on Security and Privacy (sp 2008)* 2008 May 18 (pp. 216-230). IEEE.
<https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4531155>
 - 3. 《Responsible Genomic Data Sharing Challenges and Approaches》 Chs.5&6.

Feedback Survey

- One thing you learned or felt was valuable from today's class & reading
- Muddiest point: what, if anything, feels unclear, confusing or “muddy”
- <https://www.wjx.cn/vm/hX0mlro.aspx>

BME2133 Class Feedback Survey

