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Due: on or before 3:00pm,
May 28, 2025 (Wednesday)

HW?2

e Question 1 (50 pts)

For this question, all datasets consist of Boolean attributes, where 0 and 1 both generalize to the value *.
Assume that all attributes are equal in their modification (i.e., generalization/suppression) costs.

Qla (10 points). Protect the following dataset using k-anonymization with & = 2. You can generalize cells
and/or suppress records mn your solution. Please make as few modifications as possible.

1D Attribute A Attribute B Attribute C
1 1 0 1
2 0 0 0

Q1b (10 points). Protect the following dataset using k-anonymization with £ = 3. You can generalize cells
and/or suppress records mn your solution. Please make as few modifications as possible.
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HW?2

e Question 1 (50 pts)

For Qlc — Qle, use the following dataset:

1D Attribute A Attribute B Attribute C
1 | 1 l
2 1 1 1

Qlc (10 points). Protect the dataset using k-anonymization with £ = 3. You can generalize cells and/or
suppress records in your solution. Please make as few modifications as possible.

Q1d (10 points). Protect the dataset using k-anonymization with £ = 3. You can generalize cells and/or
suppress records in your solution. However, there 1s one additional condition: All cells i each attribute
(column) need to be generalized to the same level if they are generalized. This 1s so-called Full-domain
generalization with suppression. Please make as few modifications as possible.

Qle (10 points). Protect the dataset using k-ambiguation with £ = 3. You can generalize cells and/or
suppress records in your solution. Please make as few modifications as possible.

Feel free to use the Datafly algorithm [1] or ARX Data Anonymization Tool [2,3] to help you achieve -
Anonymization. However, these tools are not required.

[1] Sweeney L. Datafly: A system for providing anonymity in medical data. Darabase Security XI:
Status and Prospects. 1998:356-81. hitps://dataprivacylab.org/datafly/paper2.pdf

[2] Prasser F, Kohlmayer F, Lautenschldger R, Kuhn KA. Arx-a comprehensive tool for anonymizing
biomedical data. In AMIA Annual Symposium Proceedings 2014 Nov 14 (Vol. 2014, p. 984).
https://pmc.ncbi.nlm.nih.gov/articles/PMC4419984/pdf/1984395 pdf

[3] ARX Data Anonymization Tool. hitps:/arx.deidentifier.org/




Problem Description:

H W 2 In this problem, you are asked to decode a string that was encoded using a variation of the Caesar cipher.

e Question 2 (50 pts)

Example:

>>> decode caesar with key("EQJS5586 lipibrvp!", [3, 4, 5])
' BME2133 homework!"
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HW?2

e Question 2 (50 pts)

Submit your source code in *.cpp file(s) or *.py / *.ipynb file(s).
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Datafly (Sweeney ‘97 & ‘02)

* Input:

Table T

Quasi-ID ={A,, ..., A }

k protection parameter

Domain Generalization Hierarchies DGH,;

L. Sweeney. Guaranteeing anonymity when sharing medical data, the Datafly system. Proc AMIA Symp. 1997: 51-55.

L. Sweeney. Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness, &
Knowledge-based Systems. 2002; 10(5): 571-588.
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* *

T~ PN

M F Black White

Example k = 2

mmm 1

Black  9/20/65 37203 372%*
r, Black  2/14/65 M 37203 T
3720* 3721*
r, Black  10/23/65 F 37215 P P
m [ Heec] G | F ) e 37200 «w+ 37209 37210 seees 37219
re Black 11/7/65 F 37215 -
re Black  12/1/64  F 37215 2
ry White 10/23/64 M 37215 Birth 10-Year Range
ry White  3/15/64  F 37217 )
r,  White 8/13/64 M 37217 Birth S'Yea{ Range
r,  White 5/5/64 M 37217 Birth year
r,  White 2/13/67 M 37215 ?
e White  3/21/67 M 37215 Birth month & year
)
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Datafly (Sweeney)

1. FREQ < list of quasi-id value frequencies from table

2. While the set of quasi-ids in FREQ with count < k account for > k records
1. Choose attribute A; with greatest number of distinct values in FREQ
2. Generalize all quasi-ids according to the DGH,,

3. Suppress quasi-ids from FREQ with < k records
4. 1f O < (# of suppressed records) < k

1. Suppress k — (# of suppressed records) records
5. Return protected table < built from FREQ
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1.

FREQ < list of quasi-id value frequencies

Black
Black
Black
Black
Black
Black
White
White
White
White
White
White

9/20/65
2/14/65
10/23/65
8/24/65
11/7/64
12/1/64
10/23/64
3/15/64
8/13/64
5/5/64
2/13/67
3/21/67

M

< £ £ <

37203
37203
37215
37215
37215
37215
37215
37217
37217
37217
37215
37215
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1.

FREQ < list of quasi-id value frequencies

Black
Black
Black
Black
Black
Black
White
White
White
White
White
White

9/20/65
2/14/65
10/23/65
8/24/65
11/7/64
12/1/64
10/23/64
3/15/64
8/13/64
5/5/64
2/13/67
3/21/67

M

< £ £ £

37203
37203
37215
37215
37215
37215
37215
37217
37217
37217
37215
37215

R R R R R R R R R R R R
-3
()}
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2.

While the set of quasi-ids in FREQ with count < k

Black
Black

9/20/65
2/14/65

M
M

account for > k records

1.

2.

37203
37203

1 ry

Choose attribute A; with greatest number of fa
distinct values in FREQ rs
Generalize all quasi-ids according to DGH,; N
White  10/23/64 M 37215 1 r,
White  3/15/64 F 37217 1 rg
White  8/13/64 M 37217 1 ro
White  5/5/64 M 37217 1 10
White ~ 2/13/67 M 37215 1 F1
White  3/21/67 M 37215 1 ry
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2.

While the set of quasi-ids in FREQ with count < k

Black
Black

9/20/65
2/14/65

M
M

account for > k records

1.

2.

37203
37203

1 ry

Choose attribute A; with greatest number of fa
distinct values in FREQ rs
Generalize all quasi-ids according to DGH,; N
White  10/23/64 M 37215 1 r,
White  3/15/64 F 37217 1 rg
White  8/13/64 M 37217 1 ro
White  5/5/64 M 37217 1 10
White ~ 2/13/67 M 37215 1 F1
White  3/21/67 M 37215 1 ry
12
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Black
Black

While the set of quasi-ids in FREQ with count < k

9/20/65
2/14/65

M
M

account for > k records
1. Choose attribute A, with greatest number of fa
distinct values in FREQ

2. Generalize all quasi-ids according to DGH,

White
White
White
White
White
White

10/23/64
3/15/64
8/13/64
5/5/64
2/13/67
3/21/67

M
F

< £ £ £

37203
37203

37215
37217
37217
37217
37215
37215

1 ry

R R R R R R
=
(o]
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# of Values

Black
Black
Black
Black
Black
Black
White
White
White
White
White
White
2

Greatest Number of Values

9/20/65
2/14/65
10/23/65
8/24/65
11/7/64

12/1/64
10/23/64
3/15/64
8/13/64
5/5/64
2/13/67

M

37203 1

37203 1 r
37215 1 s
37215 1 r
37215 1 re
37215 1 re
37215 1 r
37217 1 Iy
37217 1 ro
37217 1 1o
37215 1 o
37215 1 o

3
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Black 9/20/65 M 37203

Black 2/14/65 M 37203 T
2. While the set of quasi-ids in FREQ with count < k

account for > k records Birth 10-year Range

1. Choose attribute A, with greatest number of !
distinct values in FREQ Birth 5-year Range
2. Generalize all quasi-ids according to DGH,; )
Birth year
White  10/23/64 M 37215 P
White  3/15/64 F 37217 Birth month & year

37217 1
Birthdate

White 8/13/64 M
White 5/5/64 M 37217
White 2/13/67 M 37215
M
2

White 37215

# of Values 2 3

Greatest Number of Values 17 ©2025 Zhiyu Wan



Black 9/65 M 37203 1
Black 2/65 M 37203 1 r,
2.  While the set of quasi-ids in FREQ with count < k 1 ‘,
account for > k records
1. Choose attribute A, with greatest number of ! fa
distinct values in FREQ 1 rs
2. Generalize all quasi-ids according to DGH,; 1 ;
6
White 10/64 M 37215 1 r
White 3/64 F 37217 1 rg
White 8/64 M 37217 1 ro
White 5/64 M 37217 1 10
White 2/67 M 37215 1 M
White 3/67 M 37215 1 s
# of Values 2 12 2 3 12
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2.

Black 9/65 M 37203

Black 2/65 M 37203
While the set of quasi-ids in FREQ with count < k
account for > k records
1. Choose attribute A, with greatest number of
distinct values in FREQ
2. Generalize all quasi-ids according to DGH,;

White 10/64 M 37215

White 3/64 F 37217

White 8/64 M 37217

White 5/64 M 37217

White 2/67 M 37215

White 3/67 M 37215
# of Values 2 12 2 3
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Black 9/65 37203

Black 2/65 M 37203
2. While the set of quasi-ids in FREQ with count < k
account for > k records
1. Choose attribute A, with greatest number of
distinct values in FREQ Birth 5-year Range
2. Generalize all quasi-ids according to DGH,;

Birth 10-year Range

Birth year
White  10/64 M 37215
White 3/64 F 37217 Birth month & year
White 8/64 M 37217 i
White 5/64 M 37217 Birthdate
White 2/67 M 37215
White M 37215

# of Values 2 2 3

Greatest Number of Values 17 ©2025 Zhiyu Wan



IO

Black 1965 37203 2 ry M
Black 1965 F 37215 2 r3 Iy
Black 1964 F 37215 2 rs, I'
White 1964 M 37215 1 r,

White 1964 F 37217 1 rg

White 1964 M 37217 2 re Mo
White 1967 M 37215 2 i1 Mo

# of Values 2 3 2 3 2 <TOTAL

2.  While the set of quasi-ids in FREQ with count < k
account for > k records
1. Choose attribute A, with greatest number of
distinct values in FREQ
2. Generalize all quasi-ids according to DGH,;

BME2133: Lecture 17 ©2025 Zhiyu Wan
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IO

Black 1965 37203 2 ry r
Black 1965 F 37215 2 r3 Iy
Black 1964 F 37215 2 rs, I'g
White 1964 M 37215 1 r
White 1964 F 37217 1 rg
White 1964 M 37217 2 [ only 2
White 1967 M 37215 2 | records
# of Values 2 3 2 3 2

2.  While the set of quasi-ids in FREQ with count < k
account for > k records
1. Choose attribute A, with greatest number of
distinct values in FREQ
2. Generalize all quasi-ids according to DGH,;
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IO

Black
Black
Black
White
White
White
White
# of Values 2

1965
1965
1964
1964
1964
1964
1967
3

F

N < <

37203
37215
37215
37215
37217
37217
37215
3

N N N P = N N N

3. Remove quasi-ids from FREQ with < k records
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COCTTICIET -

Black 1965 37203 2 ry r

Black 1965 F 37215 2 rs, fy

Black 1964 F 37215 2 2y g

White 1964 M 37217 2 ry, 10

White 1967 M 37215 2 i Mo
# of Values 2 3 2 3

3. Remove quasi-ids from FREQ with < k records

BME2133: Lecture 17 ©2025 Zhiyu Wan
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COCTICINT . —

Black 1965 37203 2 ry
Black 1965 F 37215 2 rs, fy
Black 1964 F 37215 2 oy g
White 1964 M 37217 2 'y, 10
White 1967 M 37215 2 i Mo

# of Values 2 3 2 3 2 # Suppressed

4. If 0 <# of suppressed records < k
1.  Suppress k — (# of suppressed records) records
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YT

= T 37903 5. Return T € built from FREQ
Black 1965 M 37203

Black 1965 F 37215 Race Birthdate Sex Zip Count
Black 1964 F 37215 Black 1965 M 37203 2
Black 1964 F 37215 Black 1965 F 37215 2
White 1964 M- 37217 Black 1964 F 37215 2
White 1964 M 37217 White 1964 M 37217 2
White 1967 M 37215 White 1967 M 37215 2
White 1967 M 37215
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OIS | T

Black 9/20/65 37203 Black 1965 37203
r, Black 2/14/65 M 37203 Black 1965 M 37203
rs Black 10/23/65 F 37215 Black 1965 F 37215
r, Black 8/24/65 F 37215 Black 1965 F 37215
e Black 11/7/65 F 37215 Black 1964 F 37215
re Black 12/1/64 F 37215 Black 1964 F 37215
ry White 10/23/64 M 37215 * * * *
r White 3/15/64 F 37217 * * * *
g White 8/13/64 M 37217 White 1964 M 37217
o White 5/5/64 M 37217 White 1964 M 37217
r,  White 2/13/67 M 37215 White 1967 M 37215
r,  White 3/21/67 M 37215 White 1967 M 37215
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Caesar Cipher

X:Y:Z E|F
Shift=3

EIFIG H:!I

@ Encryption Key @ Decryption Key

+3 -3
“Hello” L » “Khoor” L, “Hello”
] Encryption ] Decryption ]

plaintext ciphertext plaintext

Ciphertext=(Plaintext + Shift) mod 26
Plaintext =(Ciphertext - Shift) mod 26



&

Caesar Cipher

N fr f ljsnzx!

B BRETE (Baf27#) ~

i, RAEEEFAFEBE EEENEI: "N frfljsnnd”, &%, Al
ARERE SRS ERRD. IHERM—TEEERa TS, s
EEENT, BENISEREENERNRSE.

ETE, SEIAFTHTAEREE, ARESHTRENRSESRTROMER. REBESE2SHITHNEEE (1
F25) , EAREIN6ASHERAY. AFTEEIRESIISR, RUEALFIHFEIROBRESR, WaEks
BAHNEEE.

ISR RFEEE, HNEUEERN3, WEROTIS (RE13) . FLAFETTRHaFEE"". E=8
o, BEFEEEEE "R, TR e, BABBERS (FHRaRIE+5) . MR IR, MEEES-5 (B
+21) . HEER TSP,

BRI AR

-N-> 1 (NES14=8, 14-5=9, Jal)

-f->a (f2%64 =8, 6-5=1, ¥ira)

-r-=m (r218-5=13, WM)

FREAEIPEMEN frigfidse”l am”, EEREAIE. S
-1->g (IR12-5=7, G)

-j->e (j&10-5=5, F)

-s->n (s£19-5=14, N)

-n->i (nE&14-5=9, 1)

-z->u (z826-5=21, U)

-x-»5 (x824-5=19, S)

BTl lisno "8R35 genius”, A TEE"] am a genius!”, X=EAE.

g, HE AR RS EE T hatSREE VSR, BREEE, REEEXBEMER. ArHEEE
S=1859 , TIARREEFIRE, RUEELHREESMEREREND. B, AP EESMnE e
IR, FUEERESFENRRSIROESHEN.

et M

ncrvotion Kev @ Decryption Key
+[3, 5, 10] -[3, 5, 10]

“Hello”

A

plaintext

\ 4

“Hello”

Rt

Encryption Decryption

ciphertext plaintext

Ciphertext=(Plaintext + Shift) mod 26

Plaintext =(Ciphertext - Shift) mod 26



Learning Objectives of This Lecture

After this lecture, students should be able to:

* Know the concept of federated learning (FL)

* Types of FL
* FedAvg

* Know the concept of Synthetic Data Generation (SDG)
* GAN

BME2133: Lecture 17 ©2025 Zhiyu Wan
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Outline

* What is Federated Learning (FL)

* Types of FL
* A baseline algorithm: FedAvg
* Challenges of FL

* What is Synthetic Data Generation
* GAN

BME2133: Lecture 17 ©2025 Zhiyu Wan
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Federated Learning
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From Centralized to Decentralized Data

* The standard setting in Machine Learning considers a centralized

dataset processed in a tightly integrated system

* But in the real world, data is often decentralized across many parties

data center

of

o

|__—_
-
:

o

=

=L

o000
000

£

3

=
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Why can not we just centralize the data?

* Sending the data may be too costly
 Self-driving cars are expected to generate several TBs of data a day
* Some wireless devices have limited bandwidth/power

* Data may be considered too sensitive
* We see a growing public awareness and regulations on data privacy

» Keeping control of data can give a competitive advantage in business and
research

BME2133: Lecture 17 ©2025 Zhiyu Wan
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How about each party learning on its own?

* The local dataset may be too small
e Poor predictive performance (e.g., due to overfitting)
* Non-statistically significant results (e.g., medical studies)

* The local dataset may be biased
* Not representative of the target distribution
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Broad Definition of Federated Learning

* Federated Learning (FL) aims to collaboratively train a ML model

while keeping the data decentralized

o

o

[;'

D@

D@

BME2133: Lecture 17 ©2025 Zhiyu Wan

D@

D@

34



Broad Definition of Federated Learning

* Federated Learning (FL) aims to collaboratively train a ML model
while keeping the data decentralized

1. Initialize model

BME2133: Lecture 17 ©2025 Zhiyu Wan
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Broad Definition of Federated Learning

* Federated Learning (FL) aims to collaboratively train a ML model
while keeping the data decentralized

2.  Each party makes an update using its local dataset

BME2133: Lecture 17 ©2025 Zhiyu Wan
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Broad Definition of Federated Learning

* Federated Learning (FL) aims to collaboratively train a ML model
while keeping the data decentralized

3.  Parties share local updates for aggregation

BME2133: Lecture 17 ©2025 Zhiyu Wan
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Broad Definition of Federated Learning

* Federated Learning (FL) aims to collaboratively train a ML model
while keeping the data decentralized

:«a'

—
> |
4.  Server aggregates updates and sends back to parties
= =

) {0
)
). {0
-
).
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Broad Definition of Federated Learning

* Federated Learning (FL) aims to collaboratively train a ML model
while keeping the data decentralized

/— o

Initialize model — ) op;
Each party makes an update using its local dataset - Bl 1"€|
Parties share local updates for aggregation ——

Server aggregates updates and sends back to parties

Parties update their model and iterate
D = D = D cof D =3

We would like the final model to be as good as the centralized solution (ideally),
or at least better than what each party can learn on its own

vk wh e
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Key Differences with Distributed Learning

e Data distribution

* In distributed learning, data is centrally stored (e.g., in a data center)
* The main goal is just to train faster

* We control how data is distributed across workers: usually, it is distributed uniformly at
random across worker

* In FL, data is naturally distributed and generated locally
* Data is not independent and identically distributed (non-i.i.d.), and it is imbalanced
* Additional challenges that arise in FL
* Enforcing privacy constraints
* Dealing with the possibly limited reliability/ availability of participants
* Achieving robustness against malicious parties

BME2133: Lecture 17 ©2025 Zhiyu Wan

40



Cross-Device VS. Cross-Silo FL

e Cross-device FL e Cross-silo FL

>0 [0
o7Fd |07 °0 @9 Fa b7 O

Massive number of parties (up to 1019)
Small dataset per party (could be 1)
Limited availability and reliability

Some parties may be malicious

2-100 parties

Medium to large dataset per party
Reliable parties, almost always available
Parties are typically honest
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Server Orchestrated VS. Fully Decentralized FL

e Server-orchestrated FL  Fully decentralized FL
— S
—2 E

L- Q-
LY@t @n @e Q-

* Server-client communication * Device-to-device communication

* Global coordination, global aggregation * No global coordination, local aggregation

 Server is a single point of failure and may * Naturally scales to a large number of
become a bottleneck devices
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Categorized based on feature overlap in
client datasets

* Horizontal Federated Learning (HFL)
* Vertical Federated Learning (VFL)
* Federated Transfer Learning (FTL)

BME2133: Lecture 17 ©2025 Zhiyu Wan
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Horizontal Federated Learning

e Shared features, different users: Clients have the same set of
features.

* Focus: Leveraging the diversity of users with the same data structure
to enhance model accuracy and generalization.

 Example: Multiple banks training a fraud detection model using
transaction data (shared features) from different customers (different

users).
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Vertical Federated Learning

 Different features, overlapping users: Clients have different feature
sets but some features might overlap.

* Focus: Combining data from participants with complementary
information while protecting sensitive features.

* Example: Hospitals and insurance companies collaborating on
healthcare predictions using medical records (Hospital data) and
policy data (Insurance data) with overlapping features like patient IDs.
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Federated Transfer Learning

* Leveraging pre-trained knowledge: Uses a pre-trained model to
guide learning on a new task or data with different characteristics.

* Focus: Accelerating learning on new tasks or data with limited
resources, especially when privacy concerns restrict model sharing.

 Example: Using a sentiment analysis model trained on public product
reviews to personalize recommendations within a specific e-

commerce domain.
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Key Differences

m Horizontal FL Vertical FL Transfer FL

Feature overlap High Low/Partial

User overlap Low High Varies

Focus Data diversity, Shared information, Knowledge transfer
accuracy privacy
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Synchronous Federated Learning

* The Server updates the shared central model after “all the devices
send their model updates”.

* Eg: Federated Averaging.

* This approach offers several advantages:

* Faster convergence: Synchronization leads to quicker convergence towards a
more accurate global model.

e Better accuracy: The coordinated updates can result in higher model accuracy
compared to asynchronous methods.

* Reduced staleness: Updates are always fresh, mitigating the issue of outdated
gradients.
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Synchronous Federated Learning

* However, synchronous federated learning also faces some challenges:

* Increased communication overhead: All devices need to communicate with
the server at every step, leading to higher bandwidth requirements.

* Higher synchronization latency: Waiting for the slowest device can introduce
delays in the training process.
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Asynchronous Federated Learning

* The Server updates the shared central model “as the new updates
keep coming in”.

* Eg: SMPC Aggregation, Secure Aggregation with Trusted Execution
Environment(TEE).

* This approach offers several advantages:

* Relaxed communication requirements: Devices can update the model
whenever convenient, reducing communication overhead.

* Improved scalability: Asynchronous learning can handle a large number of
devices more efficiently.

* Fault tolerance: The system is more resilient to device failures or intermittent
connections
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Asynchronous Federated Learning

* However, asynchronous federated learning also faces some challenges:

 Stale gradients: Updates from devices may become outdated before reaching
the server, impacting accuracy.

* Slower convergence: The lack of synchronization can slow down the overall
training process.

* Potential for divergence: Individual models on devices may diverge
significantly from the global model.
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History of Federated Learning

e 2016: the term FL is first coined by Google researchers;

* 2020: more than 1,000 papers on FL in the first half of the year
(compared to just 180 in 2018)

* We have already seen some real-world deployments by companies
and researchers

* Several open-source libraries are under development: PySyft,
TensorFlow Federated, FATE, Flower, Substra...

* FL is highly multidisciplinary: it involves machine learning, numerical
optimization, privacy & security, networks, systems, hardware...
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What Is Aggregation in FL?

* Aggregation methods vary, each with unique advantages and
challenges.

 Beyond model updates, aggregate statistical indicators (loss, accuracy).
* Hierarchical aggregation for large-scale FL systems.

* Aggregation algorithms are crucial for FL success.
* Determine model training effectiveness.
* Impact practical usability of the global model.

BME2133: Lecture 17 ©2025 Zhiyu Wan
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Different Approaches of Aggregation

e« 2017-2019
* FedAvg, RFA, 1 unnamed

2020
* FedProx, LAQ, SAFA, FedBoost, SACFFOLD FedMA, 3unnamed

* 2021
* FedDist, FEDHQ, FAIR, FedPSO, SecureD-FL, LEGATO, SEAR, MHAT

* After 2022
 EPPDA, FedBuff, HeteroSAg, LightSecAgg

BME2133: Lecture 17 ©2025 Zhiyu Wan
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Different Approaches of Aggregation

* Average Aggregation

* Clipped Average Aggregation
* Secure Aggregation

» Differential Privacy Average Aggregation
* Momentum Aggregation

* Weighted Aggregation

* Bayesian Aggregation

e Adversarial Aggregation

* Quantization

e Hierarchical Aggregation

* Personalized Aggregation

* Ensemble-based Aggregation
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Model Aggregation Techniques

* Federated Averaging:
* Each device sends its model updates.

* The updates are averaged to create a better global model.

* Federated Stochastic Gradient Descent (FedSGD):

* Devices send gradients (directions to improve the model).

* The global model adjusts based on these gradients.

BME2133: Lecture 17 ©2025 Zhiyu Wan
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A Baseline Algorithm: FedAvg

* We consider a set of K parties (clients)
* Each party k holds a dataset D, of n; points

* Let D = D; U... U Dy, be the joint dataset and n = )}, n;, the total number
of points

* \We want to solve problems of the form gé[iRl; F(0; D) where:

* F(6;D) = Xri-1—* Fi(8; Dy) and Fi(8; Dy) = Yyep, f(6; d)

* 0 € R? are model parameters (e.g., weights of a logistic regression or
neural network)

* This covers a broad class of ML problems formulated as empirical risk
minimization.
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FedAvg (a.k.a. Local SGD)

Algorithm FedAvg (server-side) Algorithm ClientUpdate(k, 8)
Parameters: client sampling rate p Parameters: batch size B, number of local
3ol (8 steps L, learning rate n
for each round t = 0,1,... do for each local step 1,...,L do
S; + random set of m = [pK] clients B < mini-batch of B examples from Dy
for each client k € S; in parallel do 0« 0 — 51 4ep VA0 d)
0, < ClientUpdate(k, 0) send 6 to server

Ny
0 < Zke& Ok

* ForL = 1andp =1, itis equivalent to classic parallel SGD: updates are
aggregated and the model synchronized at each step

* For L > 1: each client performs multiple local SGD steps before communicating
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FedAvg (a.k.a. Local SGD)

CIFAR-10
10 | | I | |
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| | | | |
0 500 1000 1500 2000 2500 3000

Communication Rounds

* FedAvg with L > 1 allows to reduce the number of communication rounds, which is
often the bottleneck in FL (especially in the cross-device setting)

* It empirically achieves better generalization than parallel SGD with large mini-batch

* Convergence to the optimal model can be guaranteed for i.i.d. data [Stich, 2019]
[Woodworth et al., 2020] but issues arise in strongly non-i.i.d. case (more on this later)
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Fully Decentralized Setting

* We can derive algorithms similar to FedAvg for the fully decentralized
setting, where parties do not rely on a server for aggregating updates

letG = ({1,...,K}, E) be a connected undirected graph where
nodes are parties and an edge {k, [} € E indicates that k and [ can

exchange messages
* Let W € [0, 1]%*X be a symmetric, doubly stochastic matrix such
that W, = Oifandonlyif {k,l} & E

* Given models ® = [8y4,..., 0] for each party, WO corresponds to a
weighted aggregation among neighboring nodes in G:

(WO, = > Wb, where Njy={l:{k,I} € E}
[EN _ 60



Fully Decentralized Setting

Algorithm Fully decentralized SGD (run by party k)
Parameters: batch size B, learning rate n, sequence of matrices W
initialize 6\
for each round t=0,1,... do
B < mini-batch of B examples from D
007 0 — 0 Y VAEL: )
Y = Tepo Wil01

* Decentralized SGD alternates between local updates and local aggregation

« Doing multiple local steps is equivalent to choosing W1 = L, in some of
the rounds

. ;cl'he cc))nvergence rate depends on the topology (the more connected, the
aster
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Challenges

e Communication Overhead:
Federated Learning can
sometimes slow down due to

communication between devices

and servers.

* Data Differences: Devices may
have different types or amounts

of data, making it tricky to

combine their updates seamlessly.

o II'} [ ] 1 “l o
v o -7.\"’\\ II"'\\_ ‘,-"‘J /"/{ S .

,,~"'/ \_‘\ /\\‘7\ - y \\ ‘,_‘1.,- \‘\"\
q““l I.'I'r il *{‘J‘ g "Il‘o
l i ! Data Imbalance | ‘A’f,:@ A |
;\" I,."I I"-,I * ‘. ‘,-‘)
\ /'j \"\., / /
\\\ j:/ ‘\7_ - P
" Systemngeterogeneity

Challenges in

Statistical Heterogeneity
Federated Learning

r < b ™ y
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! — Y\
{ ™ rd \ !
[ ‘ s \ ||
\ s y .'{ \

<

\
\
|
/ \ ,."’
C— ‘f \ .,‘
4 \ s T A s
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\VH"-».___ B ; /'/ \'\\
Resource Allocation Privacy Concerns
| |
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Expensive Communication
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Use Cases

.
* Hea Ithca re Self - driring Car
* Telecommunications /e EN RN\

i ance B \

o S Ma rt G ri d O pti m iZatiO N Digital Health care Ff:ae:r?it:: } ‘
Personalizing

Smartphone

* Manufacturing and Industry 4.0
* Autonomous Vehicles

Interest-based Industry 4.0
adrertising

e Agriculture and Precision Farming
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Implementation

»Choosing Frameworks

» Select frameworks like TensorFlow Federated or PySyft for implementing Federated
Learning.

e TensorFlow Federated (TFF)

* Developed by Google helps define Federated Learning tasks and manage communication.
e PySyft

* Built on PyTorch, it ensures privacy in computations using techniques like differential privacy
* These tools provide the necessary resources to manage training across devices.

»Scaling Up
* Ensure scalability by optimizing communication and aggregation processes.

* Balancing loads, managing resources, and maintaining reliability are vital for efficient
operation.
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Top Federated learning frameworks

T

TensorFlow

<X ¢ Flower

NVIDIA FLARE
OpenFL '\ PySyft
intel =
% Federated
o' FedML leaming. W
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TensorFlow Federated

* TensorFlow Federated (TFF): Building Blocks for Distributed Learning
* Open-source and flexible framework by Google Al
* High-level API for defining federated computations and algorithms
e Supports various machine learning models and distributed architectures

& r\
Tensor
Federated
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Pysyft

* PySyft: Secure and Private Federated Learning with Python
* Secure enclaves for data privacy and computation
* Focus on secure aggregation and model poisoning prevention
* Easy integration with existing Python libraries and tools.

PySyft

[
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Flower

* Flower: Orchestrating Federated Learning Workflows
 Lightweight and flexible framework for managing federated training
* Focus on orchestration, communication, and resource management
* Agnostic to underlying machine learning libraries and frameworks.

3

Flower
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Synthetic Data Generation
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Challenges with Real Datasets

* Coverage

* It may not be feasible to get
samples for all categories

* Lighting conditions

* Modifications (Glasses/No glasses,
Moustache/ No Moustache etc.)

Skin redness Bags under the eyes

e Positions
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Challenges with Real Datasets

 All scenarios haven’t played out
e Stress scenarios
e What-if scenarios

tress scenario

/' stre:
e scenario
/ forecast

/// g/&jmss scenario
t=

——0

=0 t=1

3
/
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Challenges with Real Datasets

* Missing values
* Missing at random
* Missing sequences
* Need data to fill frames
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Challenges with Real Datasets

* Access
* Hard to find
e Rare class problems

* Privacy concerns making it difficult to
share
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Challenges with Real Datasets

* Imbalanced
* Need more samples of rare class

* Need proxies for data points that
were not observed or recorded
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Challenges with Real Datasets

* Labels
 Human labeling is hard
* Synthetic label generators
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Open-source Tools

* Faker

* Synthetic Data Vault
e Data Synthesizer

* Synthpop

* VAE

* GAN

* WGAN
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Generative Adversarial Nets (GANSs)

[GPM+14]
2-Player Zero-Sum Game
@
. O O
Noise o O _
Generator G: ® O Synthetic data
mimic the real data N @ : 8 0 X
M °
-
Discriminator D: Real/Fake @ ___ Probabilty of
listinguish real and fake data Examples ® “real”
X o
@

Wasserstein GAN [ACBI7]

minmax E___ [D(x)] +E._ [1 — D(G(2))]
D

G X~Px Zsz
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Private GAN Training

Noise

>

5AOOO

—pr 000000

Training Generator:
Does not directly interact with real data
+ Train using standard (non-private) methods

(e.g., SGD)

Privately Training Discriminator: /

* Interacts with real data
* Train using DP method such as DP-SGD
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Models Trained on Synthetic v.s. Real Data

€ Accuracy w/ real training data
@ Accuracy w/ synthetic training data

0.95

* ¢

09

® *

0.85 .

Test o &
Accuracy o
0.7
0.65
06
0.55
0.5
Random Nearest SVM Logistic
Forest Neighbor Regression
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Difficult to Reach Convergence

* Training procedures a sequence (generator, discriminator)
* The last generator often gives poor synthetic data distribution
* But mixture of generators can provide good synthetic data
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Synthetic Data Release

 Synthetic data for query/statistics release
* A large collection of statistics in mind

* 2. General-purpose synthetic data
* Exploratory data analysis
* Training ML models
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K \ Models

Baseline

medGAN
Phase 1 medBGAN
e Real L Synthesis
data A EHR [ paradigms [ |
data. EMR-WGAN
generation

WGAN

DPGAN

/ \ Metrics Ranking lists of \

synthetic datasets

N
_' Dimension-wise distribution |—|- Ranking list 1

——| Column-wise correlation | Ranking list 2

Feature-level
statistics

Latent cluster analysis
Resemblence
—1 Clinical knowledge violation |—- Ranking list 4
Record-level

consistency - —
—| Medical concept abundance '—c Ranking list 5

Train on synthetic
data and test on Ranking list 6
real data

Ranking list 3

|

Phase 2

Prediction performance

Multifaceted
assessment Outcome
| prediction

Train on real data
and test on Ranking list 7
synthetic data

Feature selection

Attribute inference risk
4| Membership inference risk |
I
—I Meaningful identity disclosure risk |

4| Nearest neighbor adversarial accuracy risk l—|

Ranking list 8

Yan C*, Yan Y*, Wan Z*, Zhang Z, Omberg L, GUinney JI ! Use cases Ranking Iistsofmudels\ Top models
Mooney SD, Malin BA. A multifaceted benchmarking of _ ( ——" [

’ _Use case 1 ( Ranking list 1 } > Model D
synthetic electronic health record generation models. Phase 3 : |
Nature communications. 2022 Dec 9;13(1):7609. g Mol | Useemsez |——(Renkingletz ) | Model D |
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Readings for the Next Week

= 1. N/A

= Optional
L N/A
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BME2133 Class
Feedback Survey

Feedback Survey

* One thing you learned or felt was
valuable from today’s class &
reading

* Muddiest point: what, if anything,
feels unclear, confusing or
“muddy”

* https://www.wijx.cn/vm/hX0OmIlro.aspx
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