

Medical Data Privacy and Ethics in the Age of Artificial Intelligence

Lecture 10: Re-identification Risk of Health Records

Zhiyu Wan, PhD (wanzhy@shanghaitech.edu.cn)

Assistant Professor of Biomedical Engineering

ShanghaiTech University

November 4, 2025

Learning Objectives of This Lecture

- Know the difference between de-identification and anonymity
 - AOL case
 - Hospital discharge record case
- Know how to estimate uniqueness bounds
 - Threshold approach
 - Probabilistic approach

Terminology

- **Explicit identifier**: features that permit a direct communication with an individual / entity
- **Quasi-identifier**: features that, in combination, permit the indirect recognition of an individual / entity

Adapted from Dr. Malin's slides.

The AOL Search Log Case of 2006

Goal: Support web information retrieval research

- 650k customers, 20 mil. queries, 3 mo. period
- Names replaced with persistent pseudonyms

Pseudonym	Name	Query	Date	Time
1		Books	1/2/05	16:52
2		Payscale	1/4/05	23:41
1		Porn	1/8/05	03:15

Queries

User 2178

foods to avoid when
breast feeding

3482401

calorie counting

User 3505202

depression and medical leave

7268042

fear that spouse
contemplating cheating

User 47122

Child porno

User 3483689

Time after time

User 31350

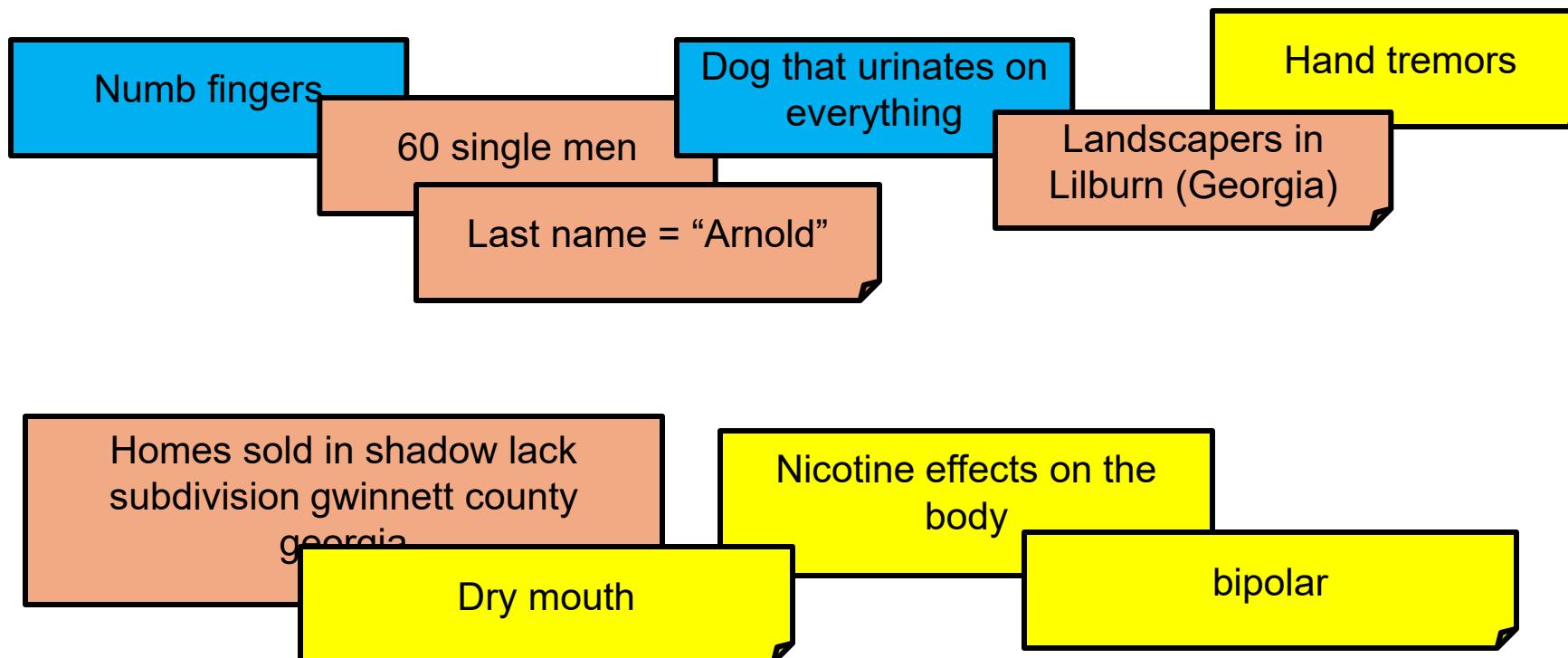
How to kill oneself with gas

User 3483689

Wind beneath my wings

Barbaro & Zeller. A face exposed for AOL searcher no. 4417749.
New York Times. Aug 9, 2006.

User 4417749 issued hundreds of searches



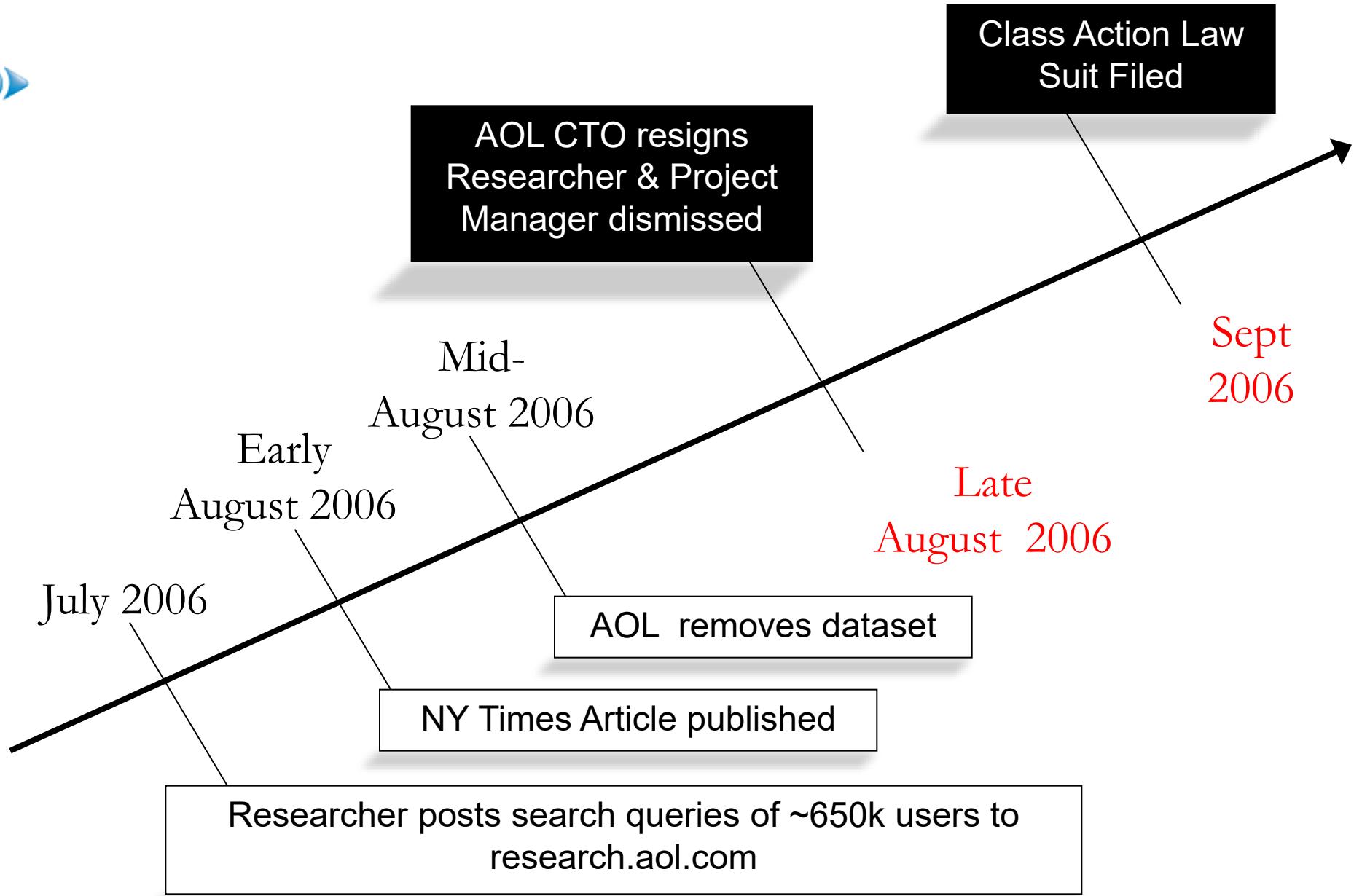
Barbaro & Zeller. A face exposed for AOL searcher no. 4417749.
New York Times. Aug 9, 2006.

User 4417749 issued hundreds of searches

Numb fingers

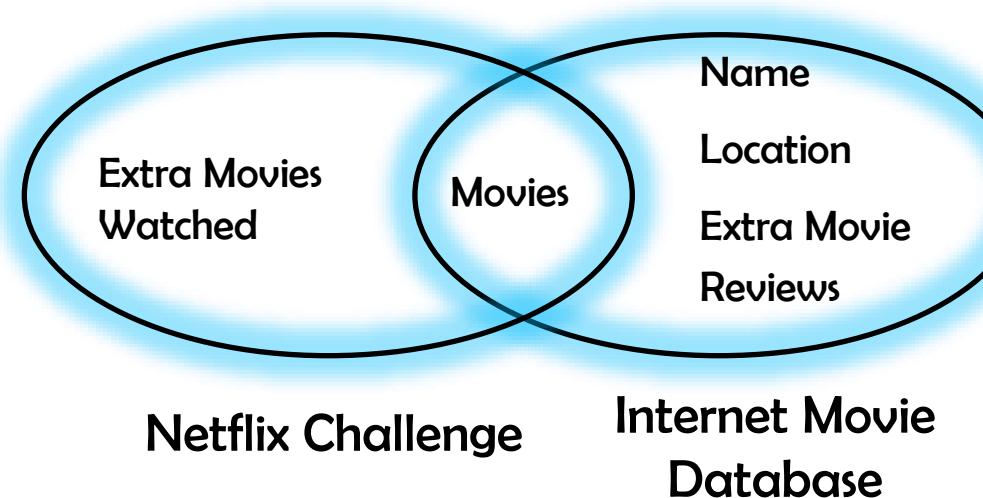
Homes sold
subdivision
go

Thelma Arnold
& Dudley



The Netflix Challenge (2008-2009)

- Netflix published movie selections of ~450,000 pseudonymized subscribers
- Re-identification via uniqueness of movie combinations
- Class action filed December 2009



A. Narayanan & V. Shmatikov. IEEE Security and Privacy Conference. 2008.

- How would you measure identifiability of the AOL dataset?
- How would you protect the identities of individuals in the AOL dataset?

Welcome **Google** User

Here are more stories related to your search

- [Netflix Settles Privacy Lawsuit, Cancels Prize Sequel](#)

[See all related stories >](#)

Forbes .com

U.S. EUROPE ASIA

Home Lists Business Tech

Breakth

The Firewall

Filtering ideas in the world of security.

[Netflix Settles Privacy Lawsuit, Cancels Prize Sequel](#)

March 12, 2010 - 12:35 pm

Taylor Buley [Bio](#) | [Email](#)

Taylor Buley is a staff writer and editorial developer for Forbes

[f Share](#) 8

67 [retweet](#)

On Friday, Netflix announced on its corporate blog that it has settled a lawsuit related to its Netflix Prize, a \$1 million contest that challenged machine learning experts to use Netflix's data to produce better recommendations than the movie giant could serve up themselves.

THE SIMPLE PROCESS OF RE-IDENTIFYING PATIENTS IN PUBLIC HEALTH RECORDS

In late 2016, doctors' identities were decrypted in an open dataset of Australian medical billing records. Now patients' records have also been re-identified - and we should be talking about it

By Dr Vanessa Teague, Dr Chris Culnane and Dr Benjamin Rubinstein

ENGINEERING & TECHNOLOGY

Featured

Dr Vanessa Teague
School of Computing and Information Systems, Melbourne
School of Engineering, University of Melbourne

Dr Chris Culnane
School of Computing and Information Systems, Melbourne
School of Engineering, University of Melbourne

Dr Benjamin Rubinstein
Senior Lecturer, School of Computing and Information Systems, Melbourne School of Engineering, University of Melbourne

In August 2016, Australia's federal Department of Health released a dataset of medical records of about 2.9 million Australians covered by the Medicare Benefits Scheme (MBS) and the Pharmaceutical Benefits Scheme (PBS), containing 1 billion lines of historical health data. This is about 10% of the population.

These longitudinal records were de-identified to prevent a single person's identity from being connected with other data. The records were released via the government's [open data website](#) as part of the Australian government's commitment to open data.

RE-IDENTIFYING PATIENTS

We found that patients can be re-identified, without decryption, through a process of linking the unencrypted parts of the record with known information about the individual.

Our findings replicate those of similar studies of other de-identified datasets:

- **A few mundane facts taken together often suffice to isolate an individual.**
- Some patients can be identified by name from publicly available information.
- Decreasing the precision of the data, or perturbing it statistically, makes re-identification gradually harder at a substantial cost to utility.

A Data Detective Method: Direct Linkage

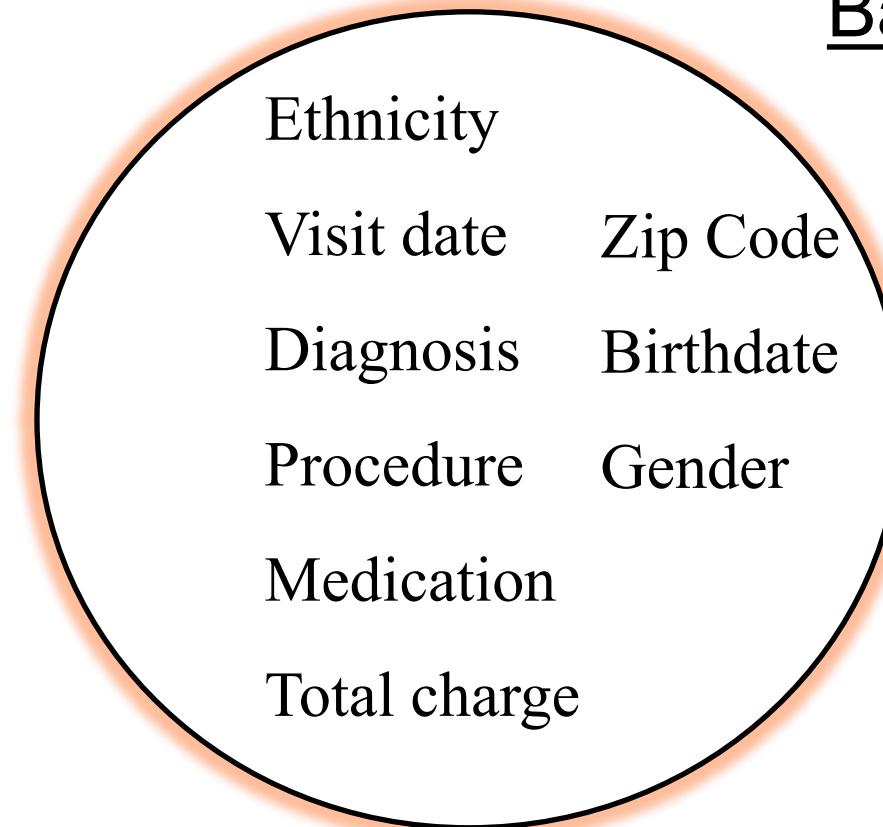
1. Uses the combination of attributes to determine the uniqueness of an entity in a dataset
2. Second dataset with identified subjects is used to make the re-identification by drawing inferences between the two datasets on the related attributes
3. The attributes do not have to be equal, but there must exist some ability for inference of between attributes.

Healthcare Reform At Work

- In 1997, 44 of 50 states collected and disseminated hospital discharge data
- In 2019, its 49 of 50 states “ ”
- Attributes recommended by *National Association of Health Data Organizations* for disclosure
 - Patient Zip Code
 - Patient Birth Date
 - Patient Gender
 - Patient Racial Background
 - Patient Number
 - Visit Date
 - Principle Diagnosis Codes (ICD-9)
 - Procedure Codes
 - Physician ID Number
 - Physician Zip Code
 - Total Charges

Case Study – “Quasi-identifier”

Back in the '90s

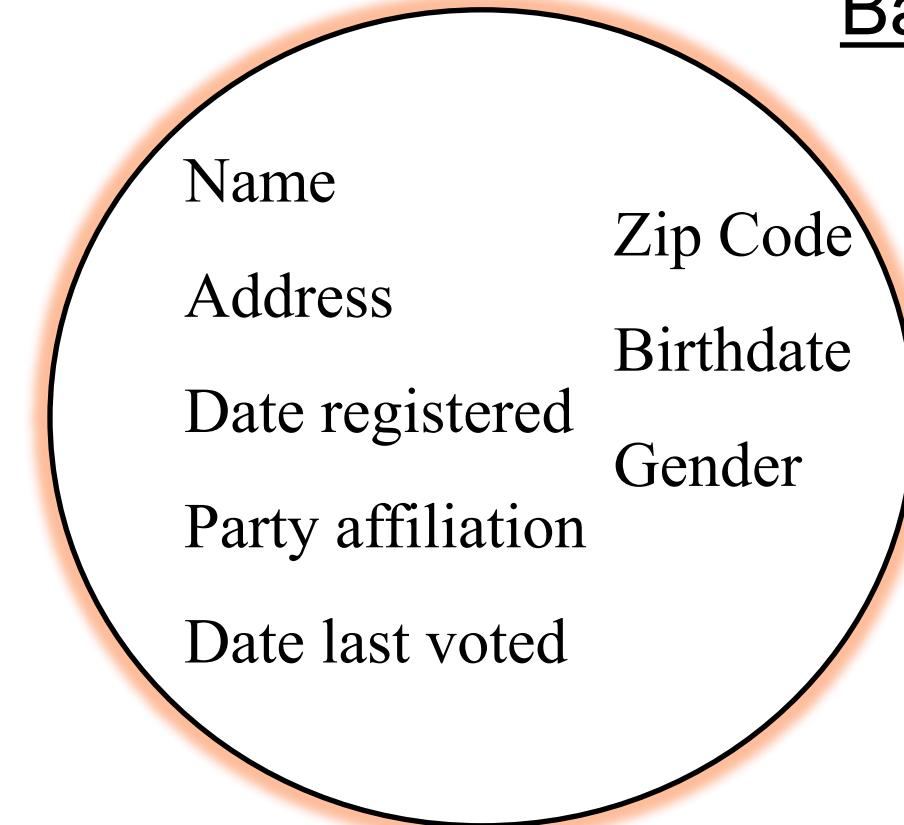


Hospital Discharge Data

L. Sweeney. Journal of Law, Medicine, and Ethics. 1997.

Case Study – “Quasi-identifier”

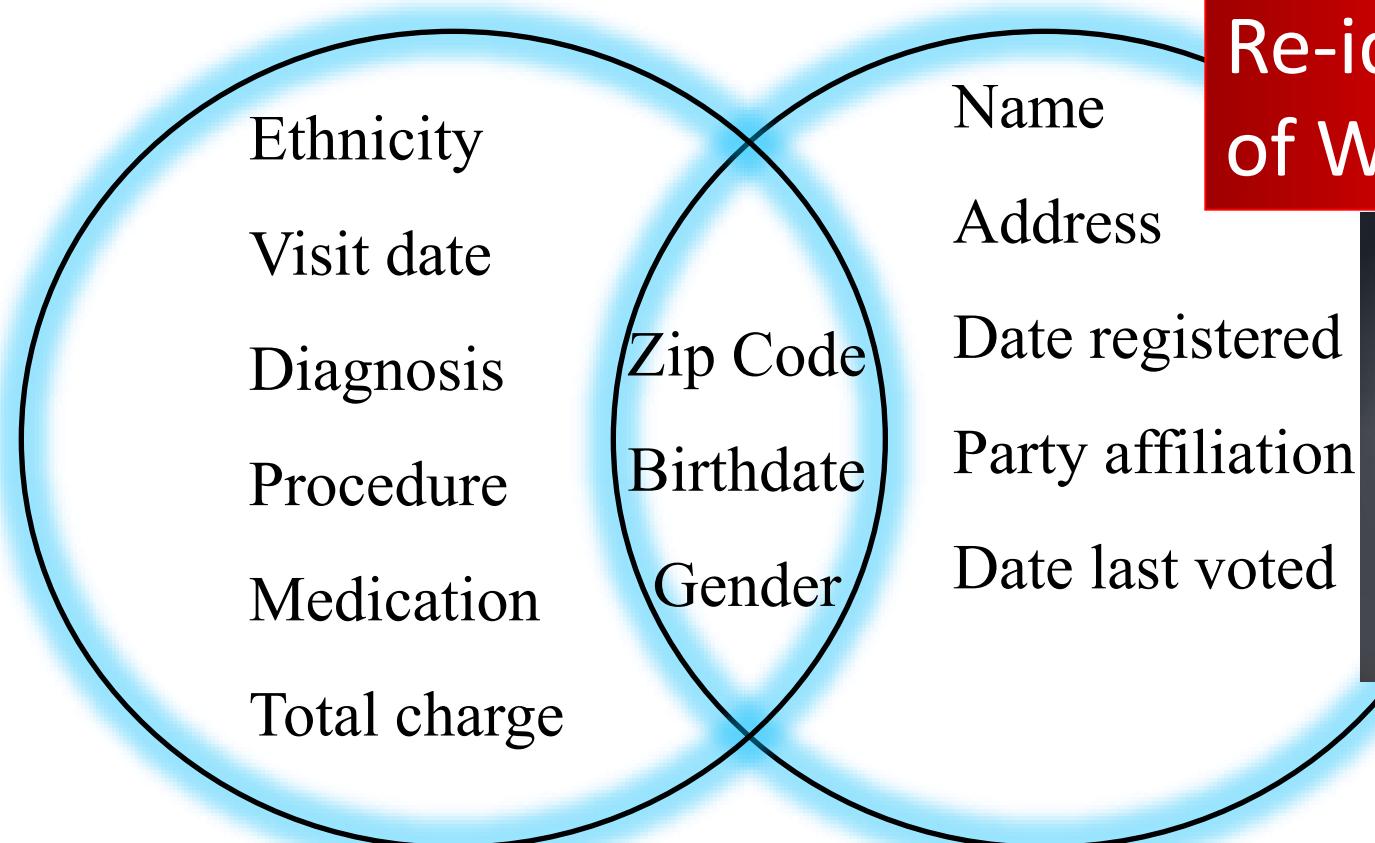
Back in the '90s



City of Cambridge, MA Voter Registration Records

L. Sweeney. Journal of Law, Medicine, and Ethics. 1997.

Case Study – “Quasi-identifier”



Re-identification
of William Weld

L. Sweeney. Journal of Law, Medicine, and Ethics. 1997.

Discharge Database Users

- Users are diverse
 - Government agencies
 - Provider associations and individual health care providers
 - Health care insurers and large health care purchasers (e.g., self-insuring companies)
 - Policymakers
 - *Researchers*
 - Private-sector (e.g., data consolidators / brokers)
 - Policy deliberations

Discharge Database Findings

- Public safety and injury surveillance / prevention
- Public health, disease surveillance, and disease registries
- Public health planning & community assessments
- Public reporting for informed purchasing & comparative reports
- Quality assessment & performance improvement
- Health services & health policy research
- Private sector analysis

HCUP

- Agency for Healthcare Research & Quality (AHRQ)
- Sponsors the Healthcare Cost and Utilization Project (HCUP)
 - Integrates state-level data collections
 - creates a uniformly formatted national information resource of discharge-level health care data
- HCUP Training
 - https://www.hcup-us.ahrq.gov/tech_assist/dua.jsp
- Modeling the identifiability of Nationwide Inpatient Sample (NIS)
 - Do not re-identify people.
 - Calculate the re-identification risk given population estimates

How much Identification is There?

- Linkage model provides a route to re-identify people
- It does not indicate the number of people that are at risk for re-identification
- This requires quantifiable methods

Counting

- Quasi-identifier $Q = \{q_1, \dots, q_n\}$
 - Ex: {**Date of Birth**, Gender, 5-Digit Zip Code}
- Each attribute q_i has a set of associated values
 - Cardinality to represent set size: $|q_i|$
 - Ex: 5-digit Zip Code has maximum-sized value set {00000, ..., 99999} and thus $|5\text{-digit Zip}| = 100000$
- Maximum number of quasi-identifying values in a population is:

$$\prod_{i=1}^n |q_i|$$

Naïve Risk Analysis

- Dirichlet drawer principle (a.k.a.“Pigeon-hole principle”)
- Population has size n
- Number of quasi-ID values is m
- Principle: There is at least one quasi-ID value with $\lceil n/m \rceil$ individuals from the population
- Proof by contradiction

Application to Privacy

- Imagine you have a population of 100,001 individuals
- The age range is [0,99]
- There are 500 zip codes in the area
- There are two genders {Male, Female}
- Is there a portion of the population that can NOT be unique?
- Quasi-ID size: $100 * 500 * 2 = 100,000$
- Dirichlet $\rightarrow \lceil 100,001 / 100,000 \rceil = 2$
 - At least one quasi-id value with 2 assigned person

Application to Privacy

- Imagine you have a population of 100,001 individuals
- The age range is [0,50]
- There are 50 zip codes in the area
- There are two genders {Male, Female}
- Is there a portion of the population that can NOT be unique?
- Quasi-ID size: $50*50*2 = 5,000$
- Dirichlet $\rightarrow \lceil 100,001 / 5,000 \rceil = 21$
 - At least one quasi-id value with 21 assigned persons

Bounds

- n people
- m quasi-id values
- What is the **maximum** number of people that can be uniquely identified?

Threshold Approach (Sweeney 2000)

- Subdivide a population by its quasi-identifier
- Calculate the number of “uniques” in the population
- Given n attributes in the QID, uniques is # of QID values with totals equal to 1
- Quasi-identifier = {DOB, Zip, Gender}
- 3-dimensional contingency table (compressed view)

			DOB / Gender							
			Male				Female			
			dob 1	dob 2	...	dob n	dob 1	dob 2	...	dob n
ZIP	zip1	Cell = 1?								
	zip2									
	...									
	zip m									

Estimation

- Sometimes, you don't have the exact details of what adversary has access to
 - e.g., you disclose a sample with {dob, gender, zip}, but don't know the full population values
- But you may have access to aggregates
 - E.g., Census counts for {year of birth, gender, county}...
- One way to measure the identifiability is to estimate detailed data from the aggregates
- Year of birth → Date of Birth
 - Uniform distribution of dates
 - Equal likelihood of 365 days

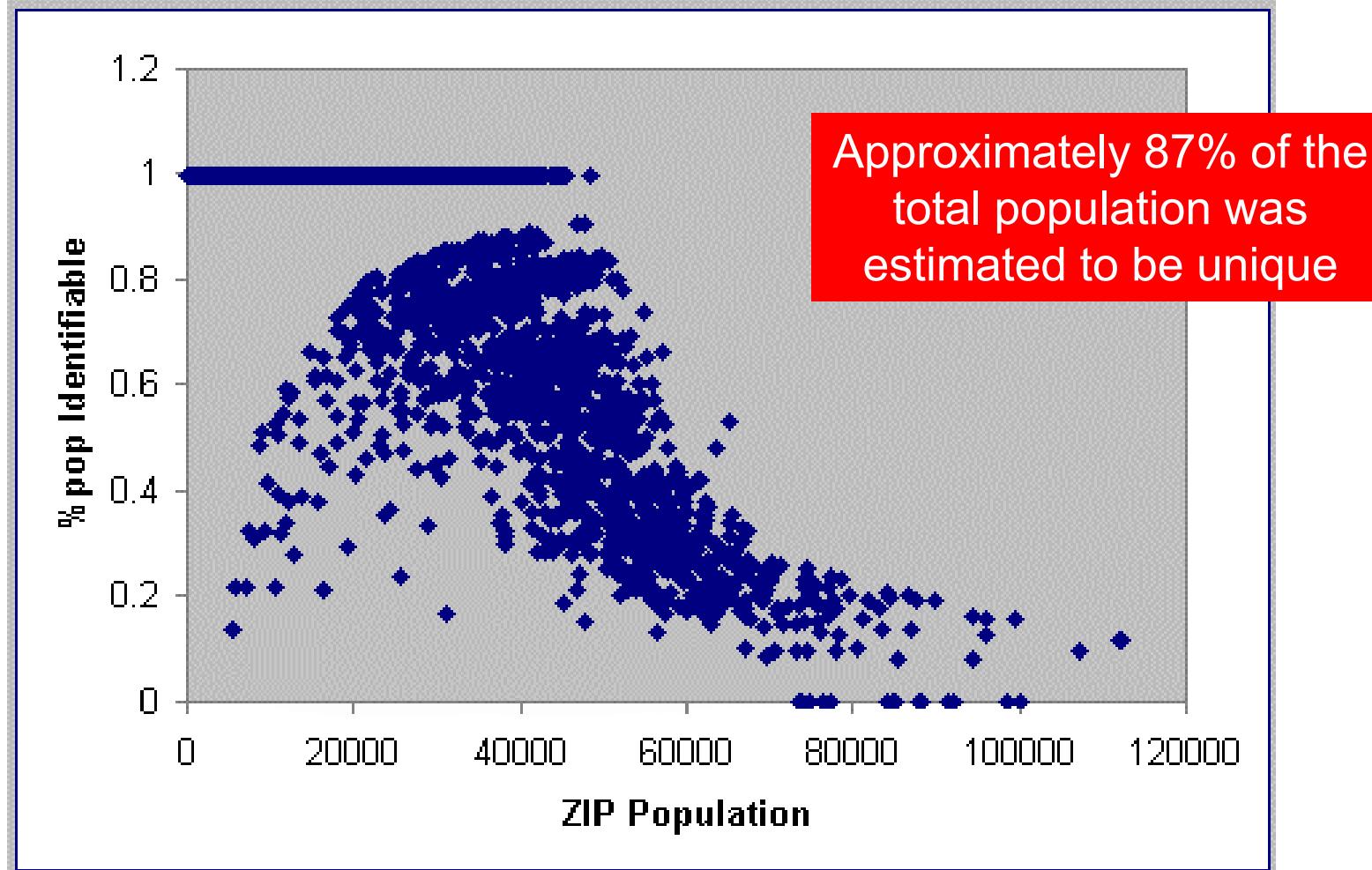
Conversion

- $\{Year\ of\ Birth, ZIP\} \rightarrow \{Date\ of\ Birth, ZIP\}$
- One option: Equal distribution of values across the cells

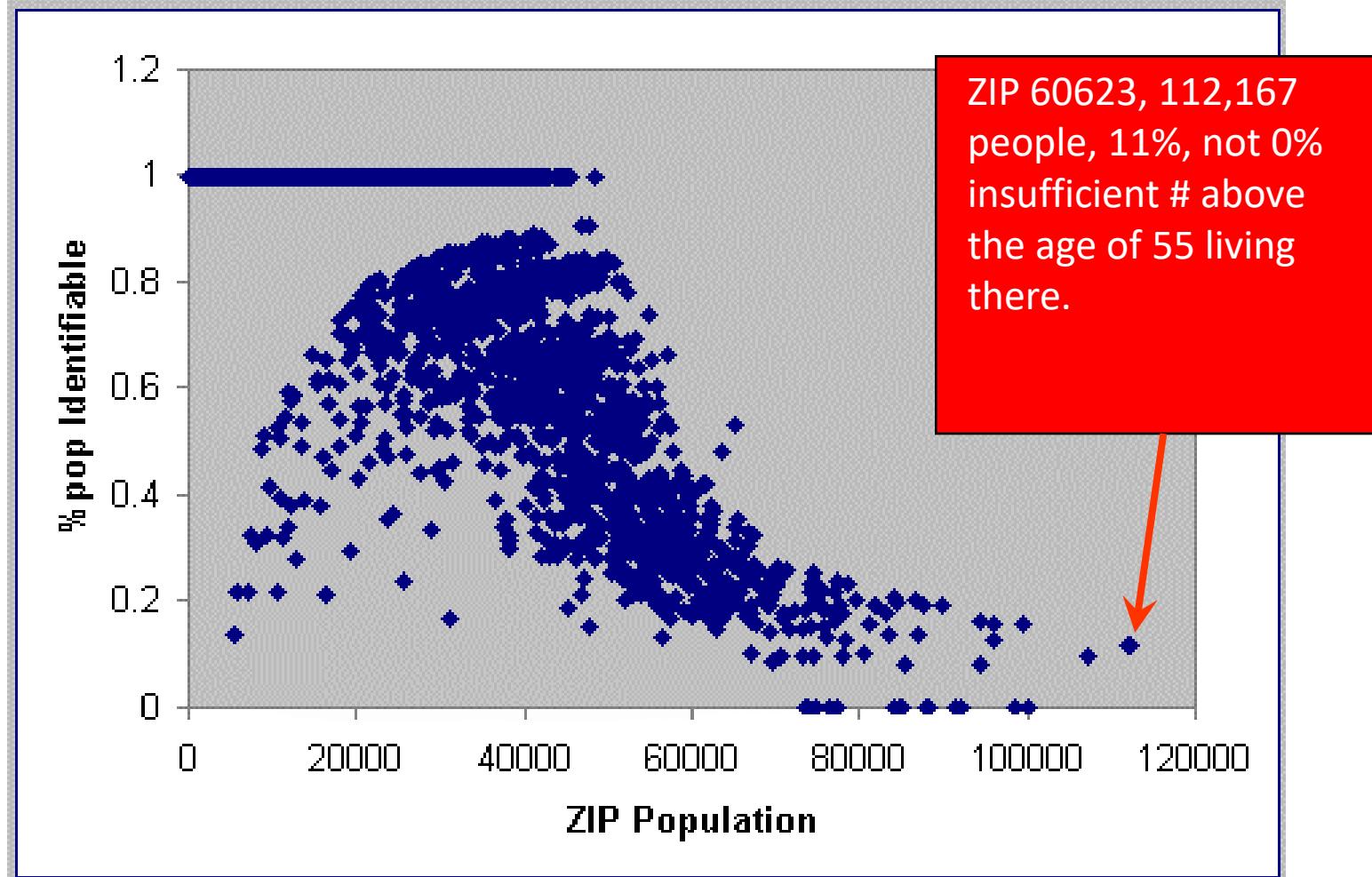
		Birth Year
		1980
ZIP	zip1	12000
	zip2	50000
	...	
	zip m	10000

ZIP	Birthdate			SUM
	1/1/80	...	12/31/80	
ZIP	zip1	12000 / 365		12000/365
	zip2	50000 / 365		50000/365
	...			
	zip m	10000 / 365		10000 /365

{date of birth, gender, 5-digit ZIP}
(1990 US Census)



{date of birth, gender, 5-digit ZIP}
(1990 US Census)



L. Sweeney. 2000.

Adobe SIMPLE. POWERFUL. FUN. Get pro-quality images on the go with Adobe Photoshop Lightroom. [Learn how >](#)

Welcome, visitor! [Sign In](#)

USA Illinois Chicago 60623 Neighborhoods

60623 Zip Code Profile

Find Neighborhoods, Home Values, Schools, Demographics, Local Discussions, Maps, & much more.

Welcome to CHICAGO, IL 60623

Save up to 10% only on hyatt.com

SEE DETAILS

HYATT WORLD OF HYATT

60623 is a densely populated, urban zip code in Chicago, Illinois. Median household income here (\$28,203) is significantly lower than US average (\$56,604). The population is racially diverse, younger, and about evenly divided between singles and married couples. Housing prices here (average \$203,300) are fairly typical for the Chicago-Naperville-Joliet metro area.

The average family income here is \$36,547/year. This is less than the national average of \$70,000/year. However, the national average number is a little misleading because there are some very wealthy Americans earning \$50 million a year or more. (Wouldn't that be nice!) This pushes the national average higher than it would be without those edge cases. The median household income in the US (median, meaning half of US households make more and half make less) is at about \$50,000/year. Median family income in 60623 is \$29,137.

An interesting fact about income: Men in 60623 earn an average of \$22,253/year. Women earn only \$18,178/year. 32,172 people in 60623 have jobs. This statistic includes anyone over the age of 16.

Are you thinking about moving to a neighborhood in 60623? You might be interested to know that the average commute time to work for people living in 60623 is 36.3 minutes!

The median age here is 28. There are 46,188 men and 45,920 women. The median age for men is 27 while for women the median age is 28.

To give you a sense of the community, 58,248 people (out of the 92,108 people live here) have lived in their home at least 5 years. The Post Office delivers mail to 17,511 homes, and 1,534 businesses every day. 2,408 people ride bikes or walk to work on a fairly regular basis.

60623 Zip code is located in the Central time zone at 42 degrees latitude (Fun Fact: this is the same latitude as Andorra la Vella, Andorra!) and -88 degrees longitude. It has an average elevation of 599 feet above sea level.

Neighborhoods in Zip Code 60623

Worth Watching **Premier Neighborhoods** **How to Earn a Star**

Harrison Block Club
Lawndale
Little Village

Near Westside Section 8
Westside Association For Community Action

Don't See Your Neighborhood? [Email Neighborhood Link](#)

SHARE

60623 Guide

- Overview
- Neighborhoods
- Real Estate & Home Values
- Demographics
- Geography
- Economics
- Schools
- Local Pictures
- Sex Offender Info

Discussion Topics

- Chicago
- Politics
- Crime
- Children
- Lost Pets
- Landscaping

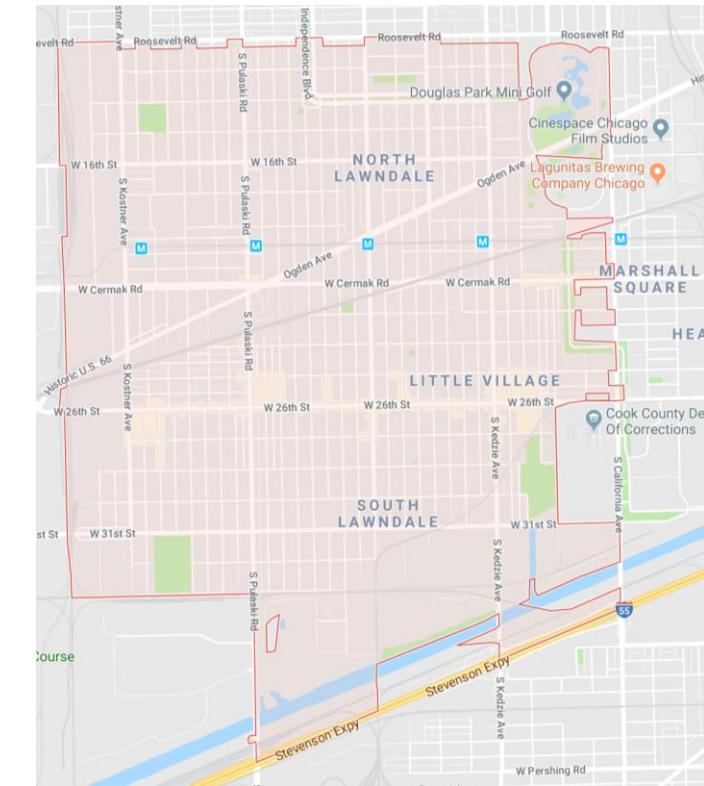
Nearby Zip Codes

- 60624
- 60804
- 60608
- 60612
- 60632
- 60644

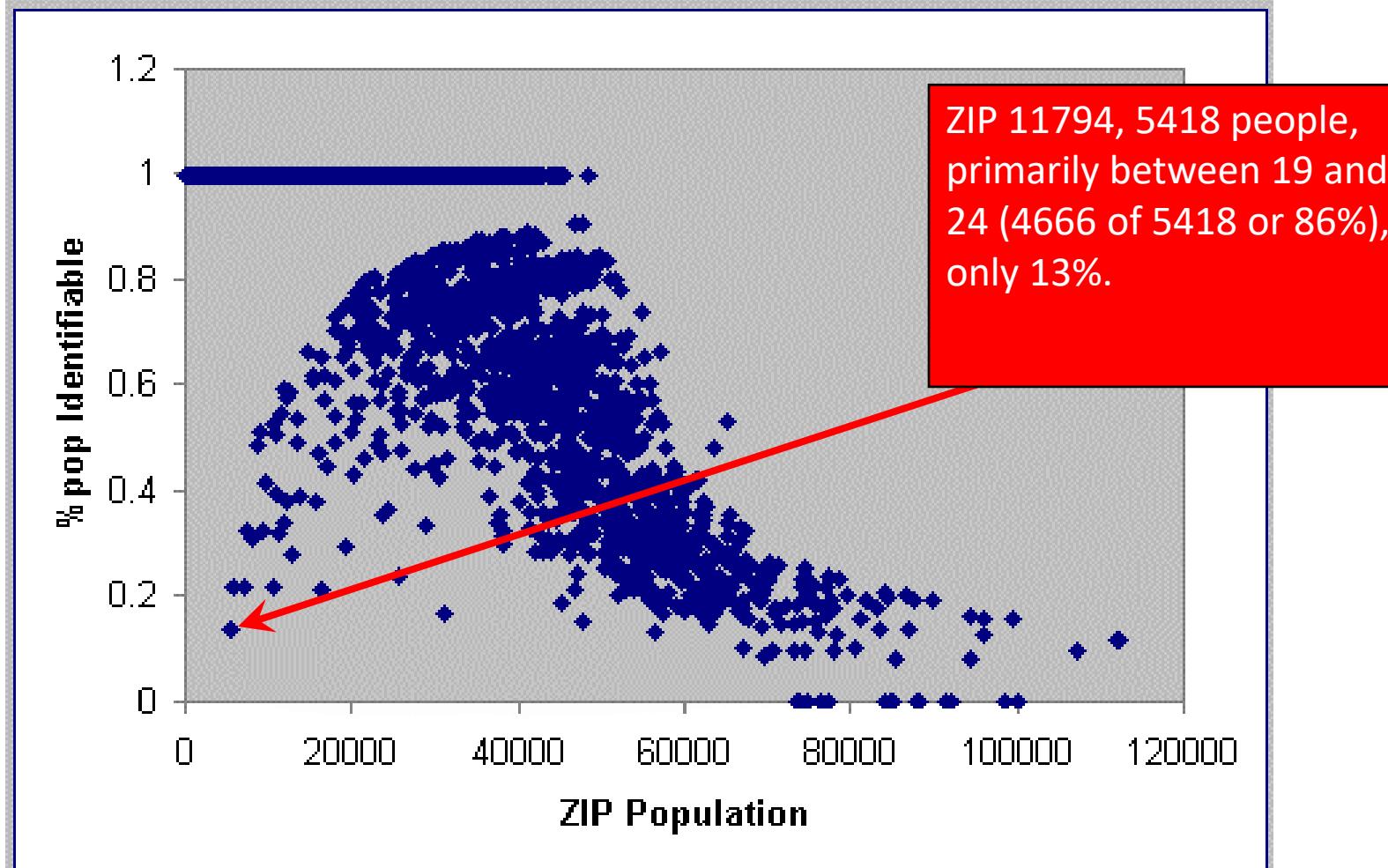
Safety

Alertag

Take the Alertag quiz and find out if an Alertag is right for you



{date of birth, gender, 5-digit ZIP}
(1990 US Census)



L. Sweeney. 2000.

11794 Zip Code in Stony Brad

www.neighborhoodlink.com/zip/11794

Welcome, visitor! [Sign In](#)

Best room rates online, guaranteed.

[BOOK NOW](#)

USA | New York | Stony Brook | 11794 | Neighborhoods

11794 Zip Code Profile

Find Neighborhoods, Home Values, Schools, Demographics, Local Discussions, Maps, & much more.

Welcome to STONY BROOK, NY 11794

Best room rates online, guaranteed.

[BOOK NOW](#)

Welcome to Stony Brook! Looking for local information? Take in hometown perspectives from individual neighborhood and HOA websites. Participate in community discussions, get instant [real estate values](#), and view some great [photos of Stony Brook](#). Explore a [map of Stony Brook](#) or review regional sex offender information. Want to connect with your community? Set up a [free HOA or neighborhood website](#) now!

Neighborhoods in Zip Code 11794

neighborhoods, HOAs, condo isn't listed here yet, [contact us](#)

[Find a Star](#)

[Find An HOA Property Manager](#)

Discussion Topics

- [Westhampton NY](#)
- [Politics](#)
- [Crime](#)
- [Children](#)
- [Lost Pets](#)
- [Landscaping](#)

Nearby Zip Codes

- [00501](#)
- [00544](#)
- [11707](#)
- [11708](#)
- [11739](#)
- [11749](#)

Safety

Alertag

Take the Alertag quiz and find out if an Alertag is right for you [codeamberalertag.com](#)

SHARE

11794 Guide

- [Neighborhoods](#)
- [Real Estate & Home Values](#)
- [Schools](#)
- [Local Pictures](#)
- [Sex Offender Info](#)

Discussion Topics

- [Westhampton NY](#)
- [Politics](#)
- [Crime](#)
- [Children](#)
- [Lost Pets](#)
- [Landscaping](#)

Nearby Zip Codes

- [00501](#)
- [00544](#)
- [11707](#)
- [11708](#)
- [11739](#)
- [11749](#)

Safety

Alertag

Take the Alertag quiz and find out if an Alertag is right for you [codeamberalertag.com](#)

Beyond the 87% Stat

Quasi-Identifier	Uniques
Date of Birth Only	12%

Beyond the 87% Stat

Quasi-Identifier	Uniques
Date of Birth Only	12%
Date of Birth & Gender	29%

Beyond the 87% Stat

Quasi-Identifier	Uniques
Date of Birth Only	12%
Date of Birth & Gender	29%
Date of Birth & 5-Digit Zip Code	69%

Beyond the 87% Stat

Quasi-Identifier	Uniques
Date of Birth Only	12%
Date of Birth & Gender	29%
Date of Birth & 5-Digit Zip Code	69%
Date of Birth & Full Postal Code	97%

A Model for Beyond Uniqueness

- $D \rightarrow$ the set of demographics
 - e.g., $\{Date\ of\ Birth, Gender, Zip\ Code\}$
- $d \rightarrow$ a specific value combination over the set of demographics
 - e.g., [1/2/1903, M, 65432]
- $P \rightarrow$ a population of individuals

G. Skinner and M. Elliot. Skinner G, Elliot M. A measure of disclosure risk for microdata. *Journal of the Royal Statistical Society (Series B)*. 2002; 64(Part 4):855-867.

A Model for Beyond Uniqueness

- $x_d \rightarrow$ the number of people in P with demographic d
- $F_i \rightarrow$ the number of demographics with $|x_d| = i$.
 - F_1 = the number of demographics that correspond to exactly 1 person
 - F_2 = the number of demographics that correspond to exactly 2 people

Example

Record	Age	City	Gender	Race
1	25	aaa	M	Black
2	26	aaa	M	Black
3	25	aaa	F	White
4	24	zzz	M	White
5	22	zzz	F	Asian
6	22	zzz	F	White

$\{\text{Age}, \text{City}\}$

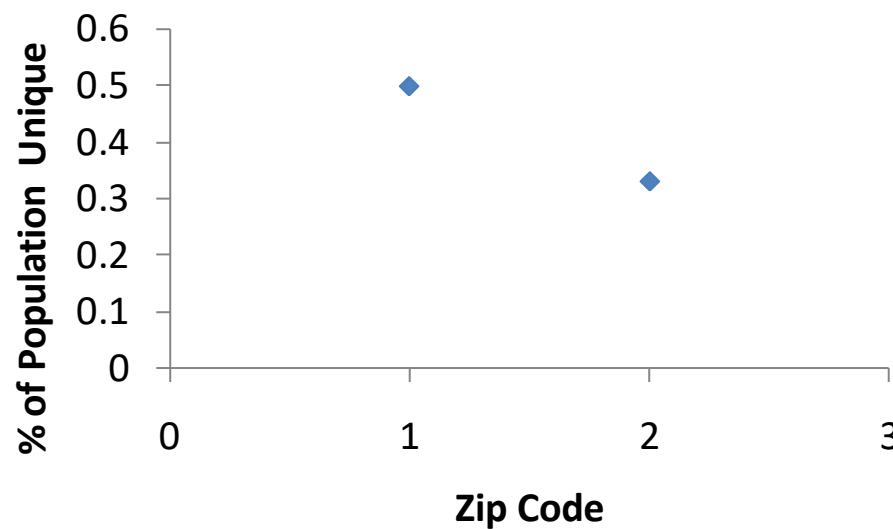
Record	Age	City	Gender	Race
1	25	aaa	M	Black
2	26	aaa	M	Black
3	25	aaa	F	White
4	24	zzz	M	White
5	22	zzz	F	Asian
6	22	zzz	F	White
7	24	aaa	F	White

Age	City	X_d
25	aaa	2
26	aaa	1
22	zzz	2
24	zzz	1
24	aaa	1

Uniqueness Per City

Age	City	X_d
25	aaa	2
26	aaa	1
22	zzz	2
24	zzz	1
24	aaa	1

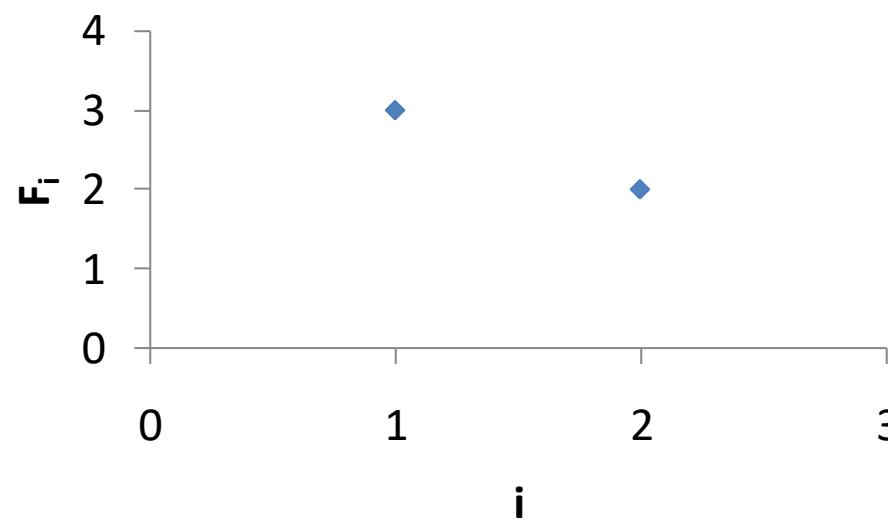
City	Percent Unique
aaa	$2 / 4 = 50\%$
zzz	$1 / 3 = 33\%$



Distribution Model for All Values

Age	City	X_d
25	aaa	2
26	aaa	1
22	zzz	2
24	zzz	1
24	aaa	1

i	F_i
1	3
2	2



Risk Analysis

- Let t be a threshold equal to the minimum number of people to which a demographic should correspond
- If privacy “threshold” is t , then the total number of people at risk is

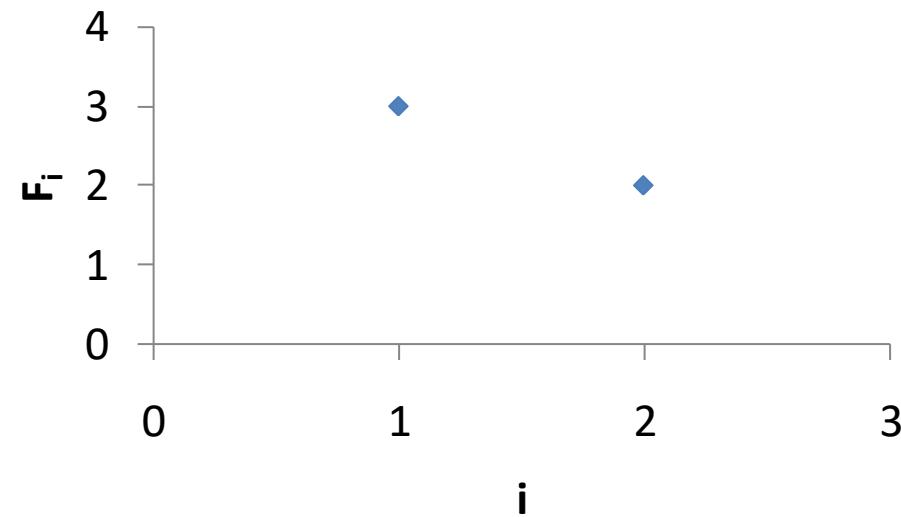
$$\sum_{i=1}^t iF_i$$

- Then, the fraction of the population at risk is

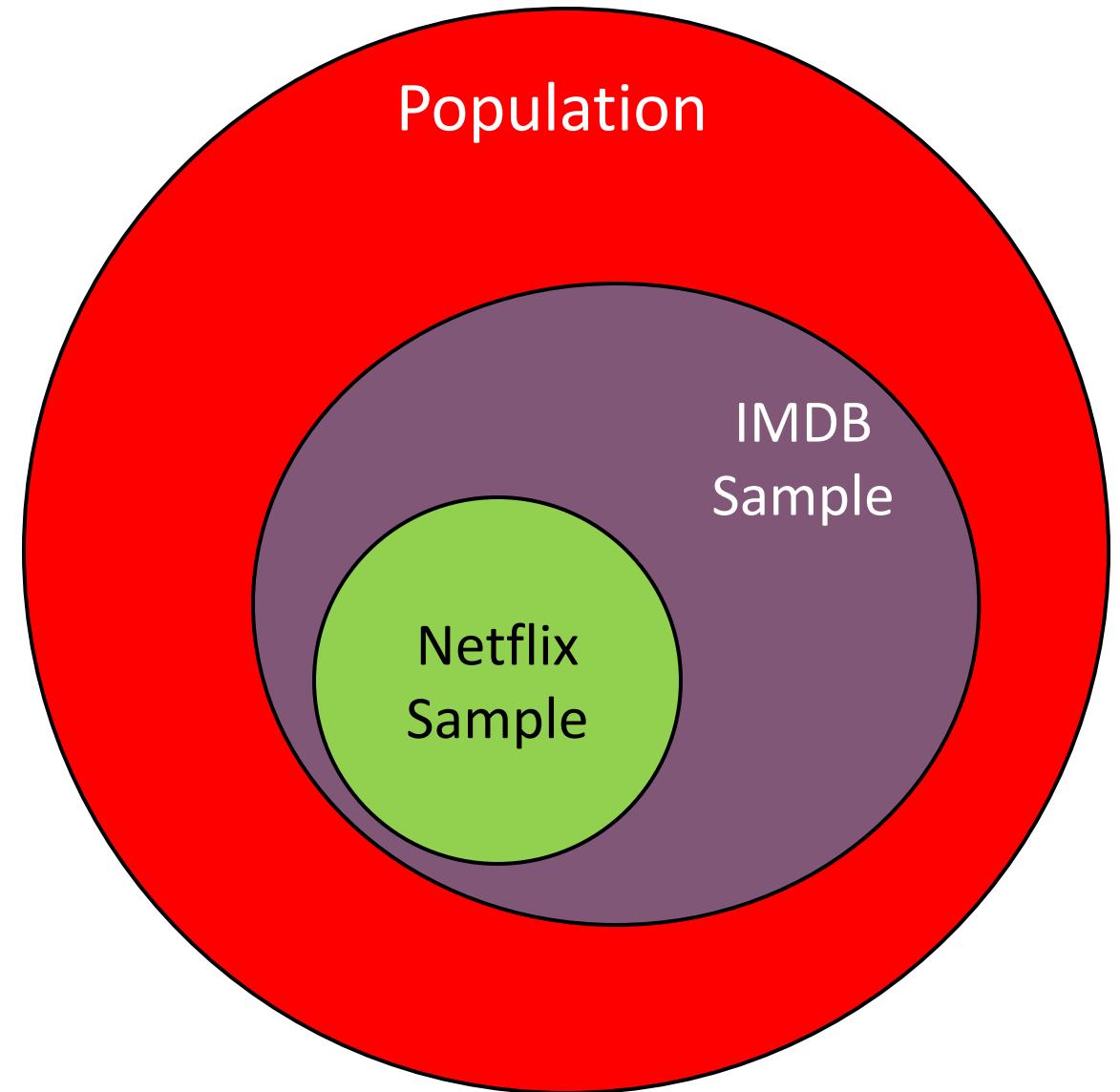
$$\frac{\sum_{i=1}^t iF_i}{|P|}$$

Distribution Model

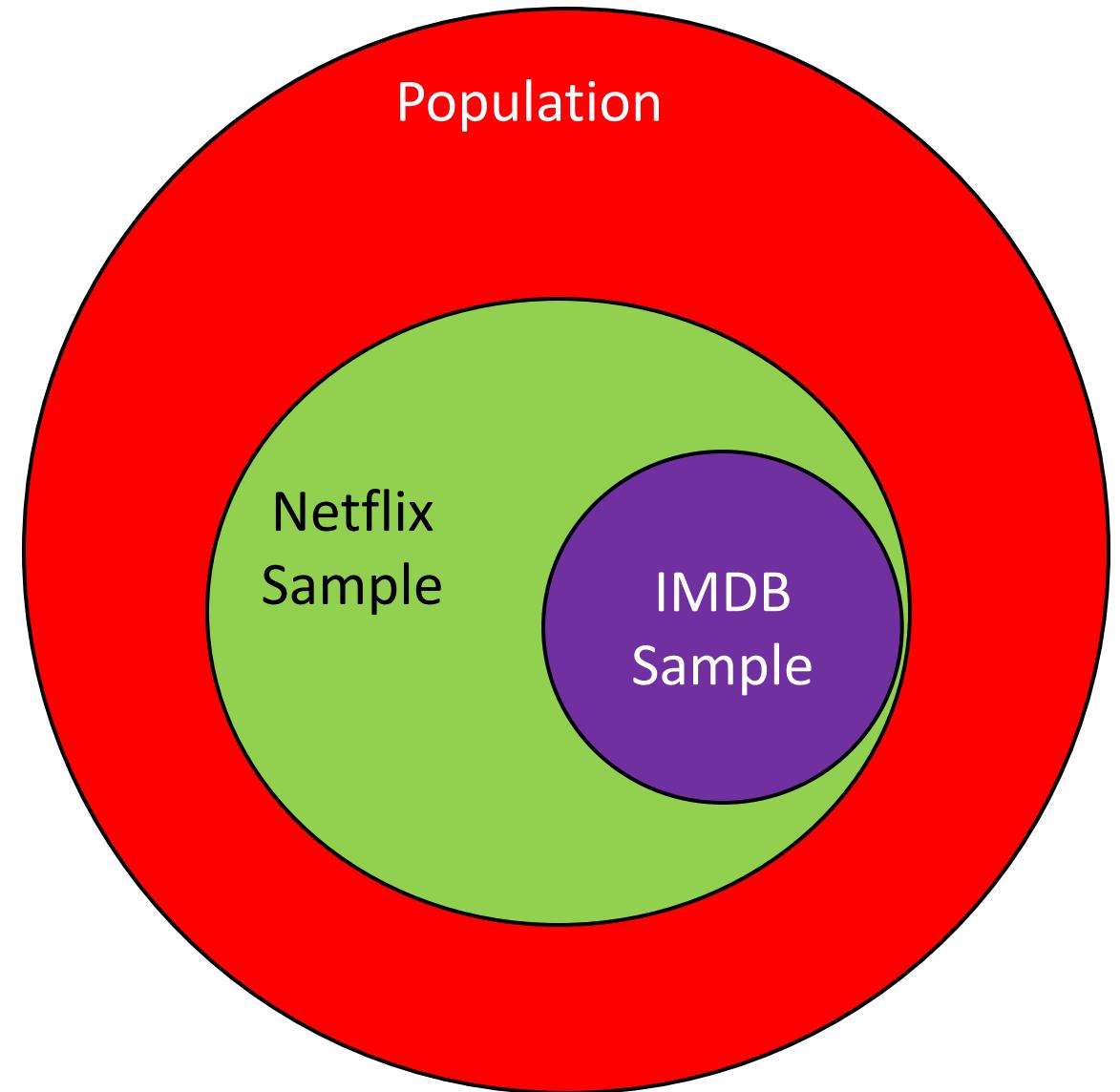
- $t = 1$:
 $3*1 = 3$ people at risk
 $\sim 43\%$ of population
- $t = 2$, there are $3*1 + 2*2 = 7$ people at risk $\sim 100\%$ of population



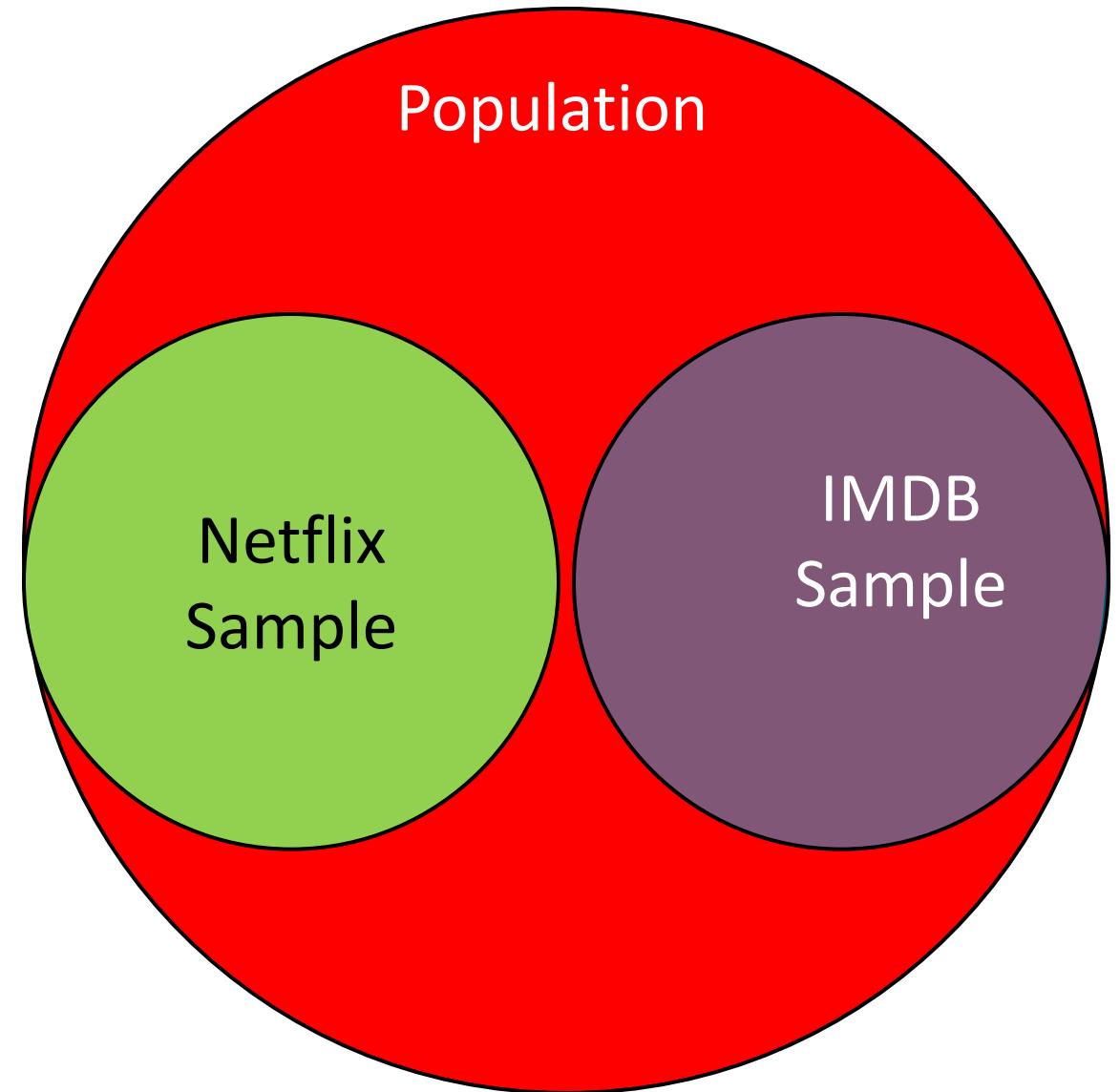
Re-identification ?



Re-identification ?



Re-identification ?



Randomized (Golle '06)

- Don't always have exact knowledge of what a data recipient has access to
 - Disclose sample with $\{dob, gender, zip\}$, but don't know the population's values
- May know population counts, such as
 - U.S. Census aggregates for $\{year\ of\ birth, gender, county\}$
- Conversion: $\{\text{Year of Birth, ZIP}\} \rightarrow \{\text{Date of Birth, ZIP}\}$
- Alternative option: Randomly allocate 12,000 “people” to 365 cells

		Birth Year			Birthdate			SUM
		1980			1/1/80	...	12/31/80	
ZIP	zip1	12000	ZIP	zip1	random		random	12000
	zip2	50000		zip2	random		random	50000
				
	zip m	10000		zip m	random		random	10000

It's an Occupancy Problem (Golle '06)

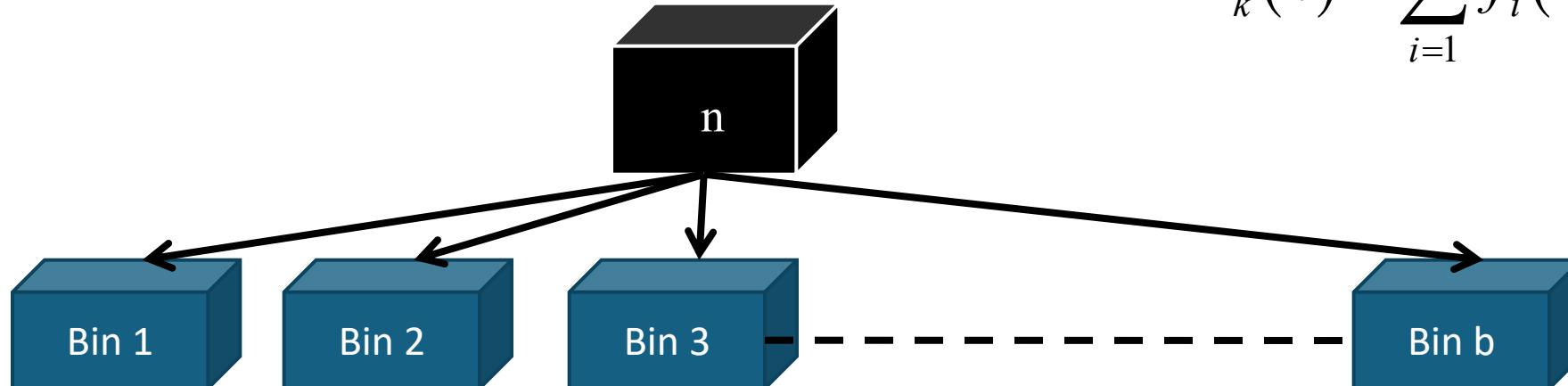
- n people in aggregated bin
- b disaggregated bins
- the expected # of bins with exactly i people
- Total number of people in a group of size less than k

Binomial Distribution

$$P(X = i) = \binom{n}{i} p^i (1 - p)^{n-i}$$
$$\binom{n}{i} = \frac{n!}{i! (n - i)!}$$

$$f_i(n) = \binom{n}{i} b^{1-n} (b - 1)^{n-i}$$

$$r_k(n) = \sum_{i=1}^{k-1} f_i(n)$$



Sample Calculation

		<i>Quasi-ID values (Bins)</i>					
		2	4	256	512	1024	8192
Population (Balls)	2	0.5	2.25	254.01	510.00	1022.00	8190.00
	4	0.125	1.26	252.03	508.02	1020.01	8188.00
	64	1.08×10^{-19}	4.04×10^{-8}	199.37	451.84	961.96	8128.25
	1024	0.00	0.00	4.69	69.29	376.71	7229.41
	2048	0.00	0.00	0.09	9.38	138.58	6379.94

Expected Number of Quasi-ID values with 0 people

Sample Calculation

Quasi-ID values (Bins)

		2	4	256	512	1024	8192
Population (Balls)	2	0.250	0.563	0.992	0.996	0.998	1.000
	4	0.063	0.315	0.984	0.992	0.996	1.000
	64	0.000	0.000	0.779	0.883	0.939	0.992
	1024	0.000	0.000	0.018	0.135	0.368	0.882
	2048	0.000	0.000	0.000	0.018	0.135	0.779

Expected Ratio of Quasi-ID values with 0 people

Poisson Approximation

- When $b \rightarrow \infty, n \rightarrow \infty, \frac{n}{b} = \lambda$

$$f_i(n) = \binom{n}{i} b^{1-n} (b-1)^{n-i}$$

$$\approx b \frac{e^{-\lambda} \lambda^i}{i!}$$

Poisson Distribution

Birthday Problem

- Assume birthday is uniformly distributed at random over the year.
- If n people are born in a year, the expected number of days on which exactly 1 person born is

$$f_1(n) = n * \left(\frac{364}{365} \right)^{n-1}$$

Golle's Approach

- Special case of general equation
- If n people are born in a year, the expected # of days on which exactly k people born is

$$f_k(n) = \binom{n}{k} 365^{1-n} 364^{n-k}$$

Golle's Findings

- Results with the 2000 Census
 - Table PCT12: year of birth
 - Counties + County Equivalents
 - 33,233 Zip Code Tabulation Areas (ZCTAs), DC, plus Puerto Rico
- Uniqueness Calculations

Variable	5-Digit Zip	County
Birth Year	0.2%	0.0%
Birth Year & Month	4.2%	0.2%
Birth Date	63.3%	14.8%

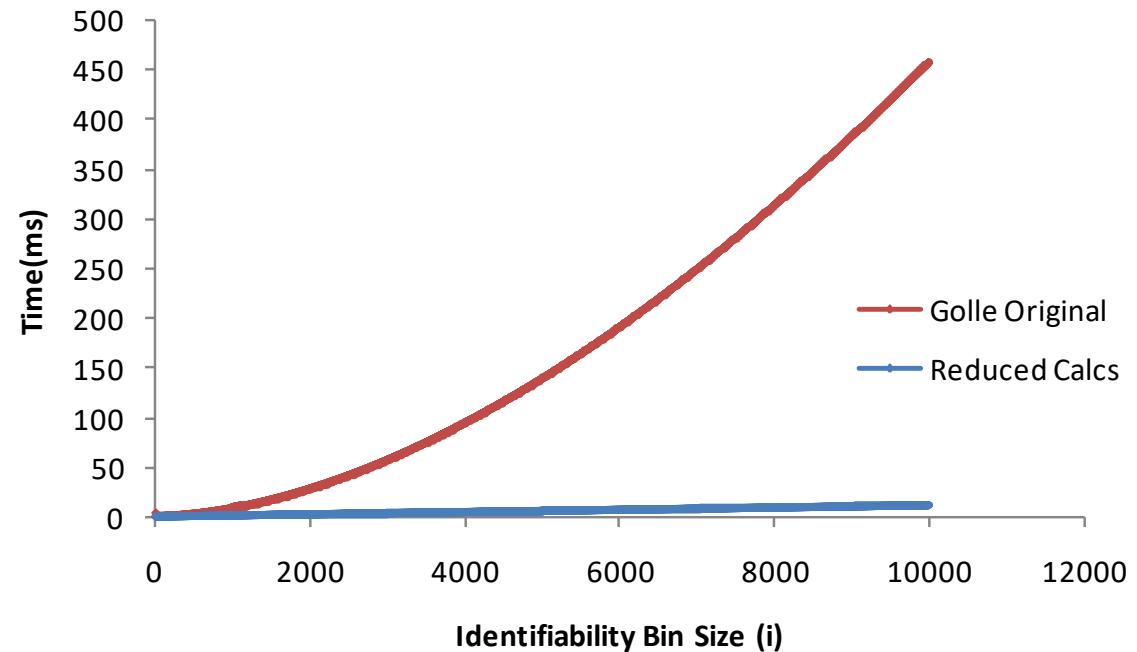
Application Challenges to Computations

- No exact closed form expression for the truncated binomial
- Can apply recursion to speed up exact computation

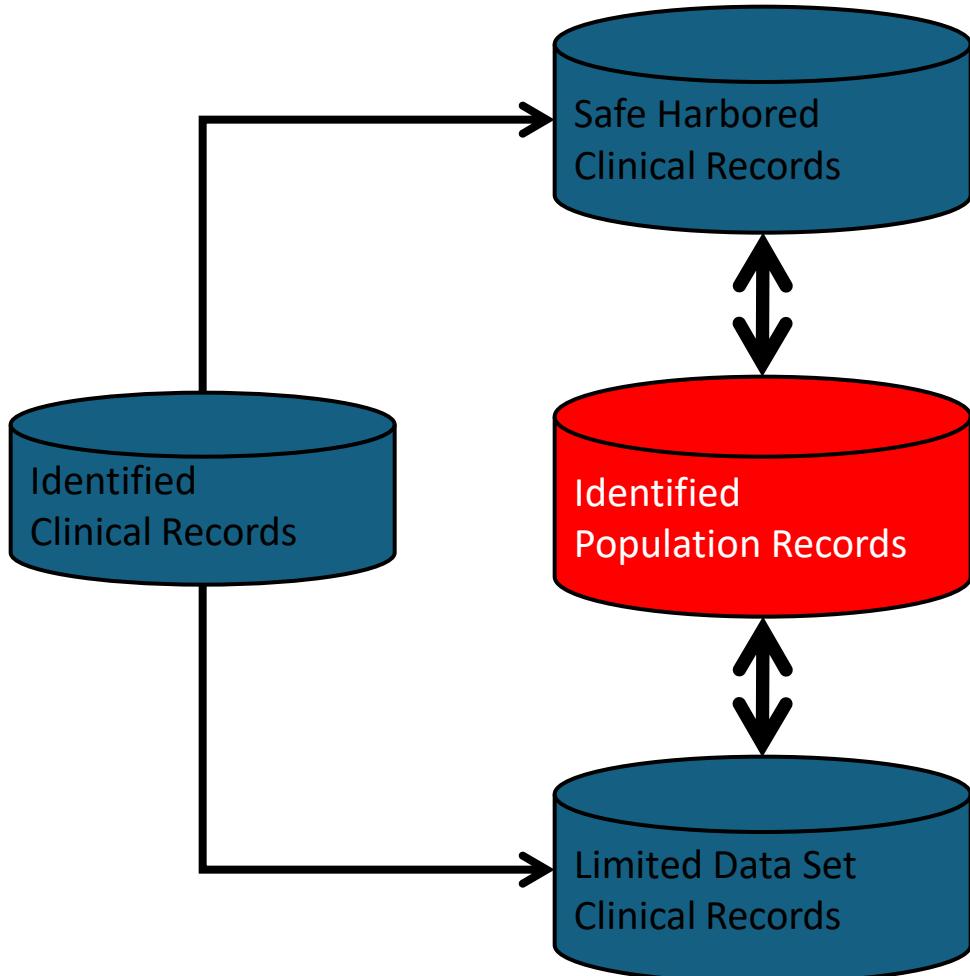
$$r_k(n) = n \left(\frac{b}{b-1} \right)^{1-n} \sum_{i=1}^k \prod_{j=1}^{i-1} \frac{n-j}{j(b-1)}$$

Or Just use the Poisson to approximate the result

$$\Pr[X_i = k] \approx \frac{1}{k!} \left(\frac{n}{b} \right)^k e^{-n/b}$$



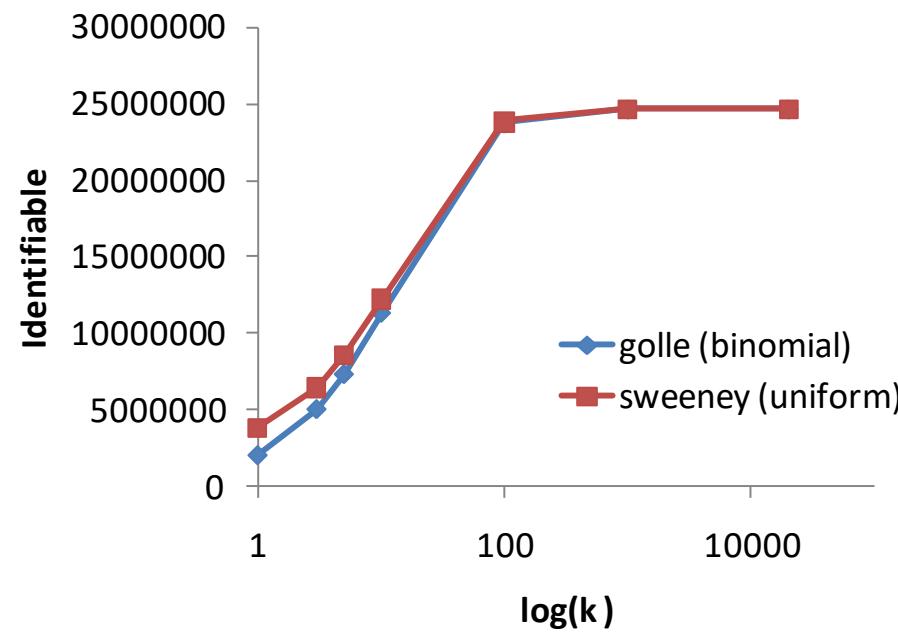
Attacks on Demographics



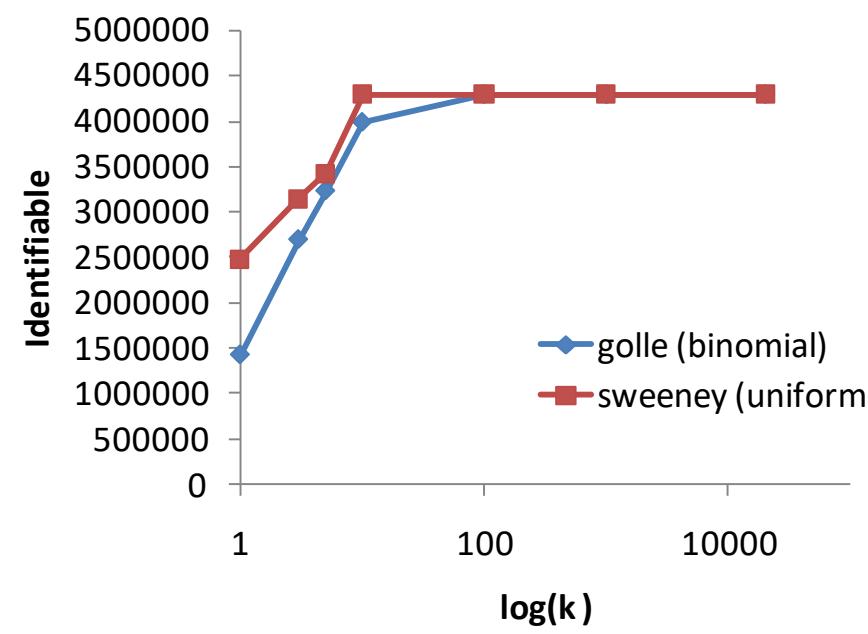
- Use population counts from the US Census
- Apply a statistical model to estimate distribution of disaggregate demographics
- It's not perfect, but it's a start.

Comparison

- {Date of Birth, Gender, Race, County}
 - Date predicted from Year

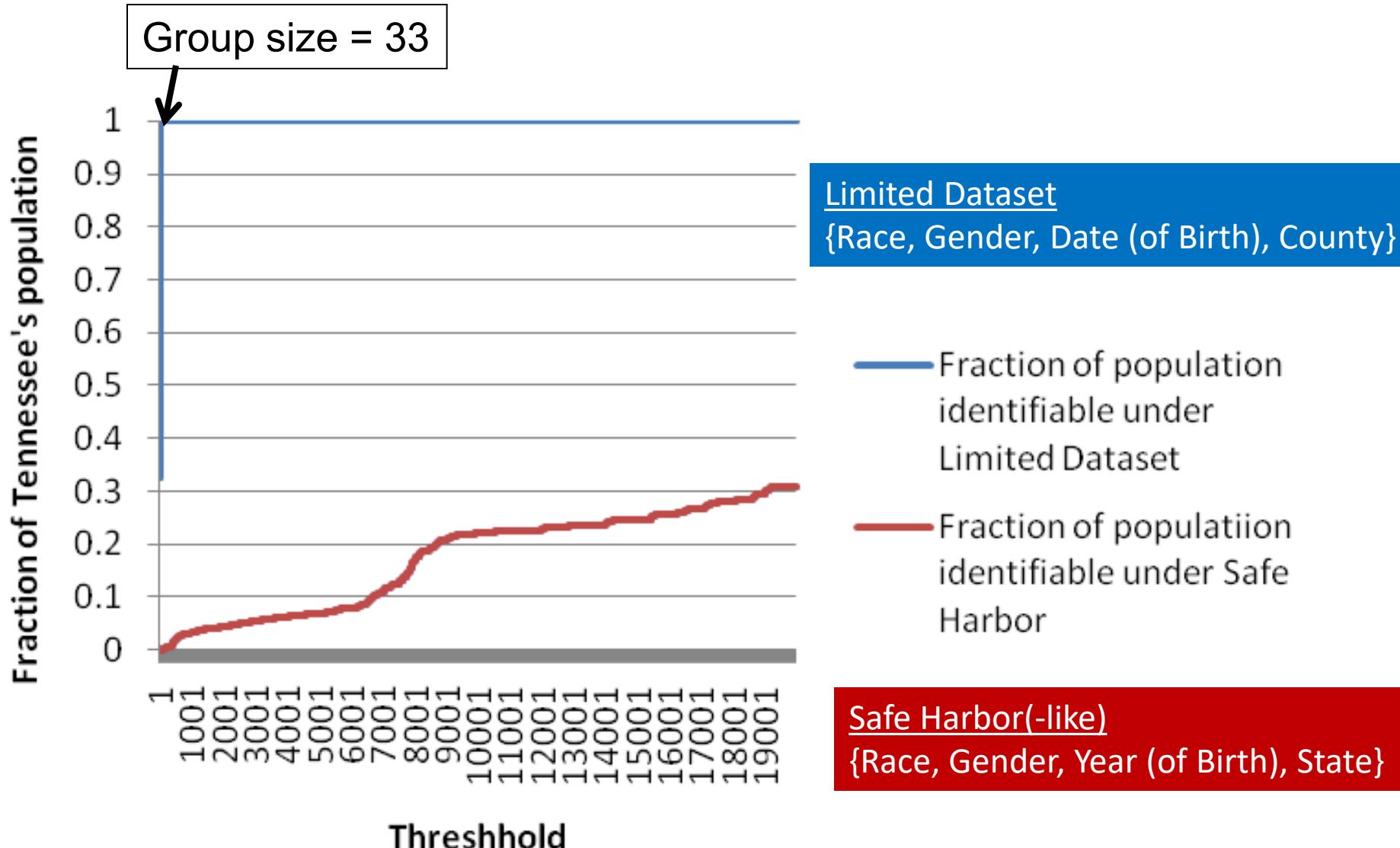


California

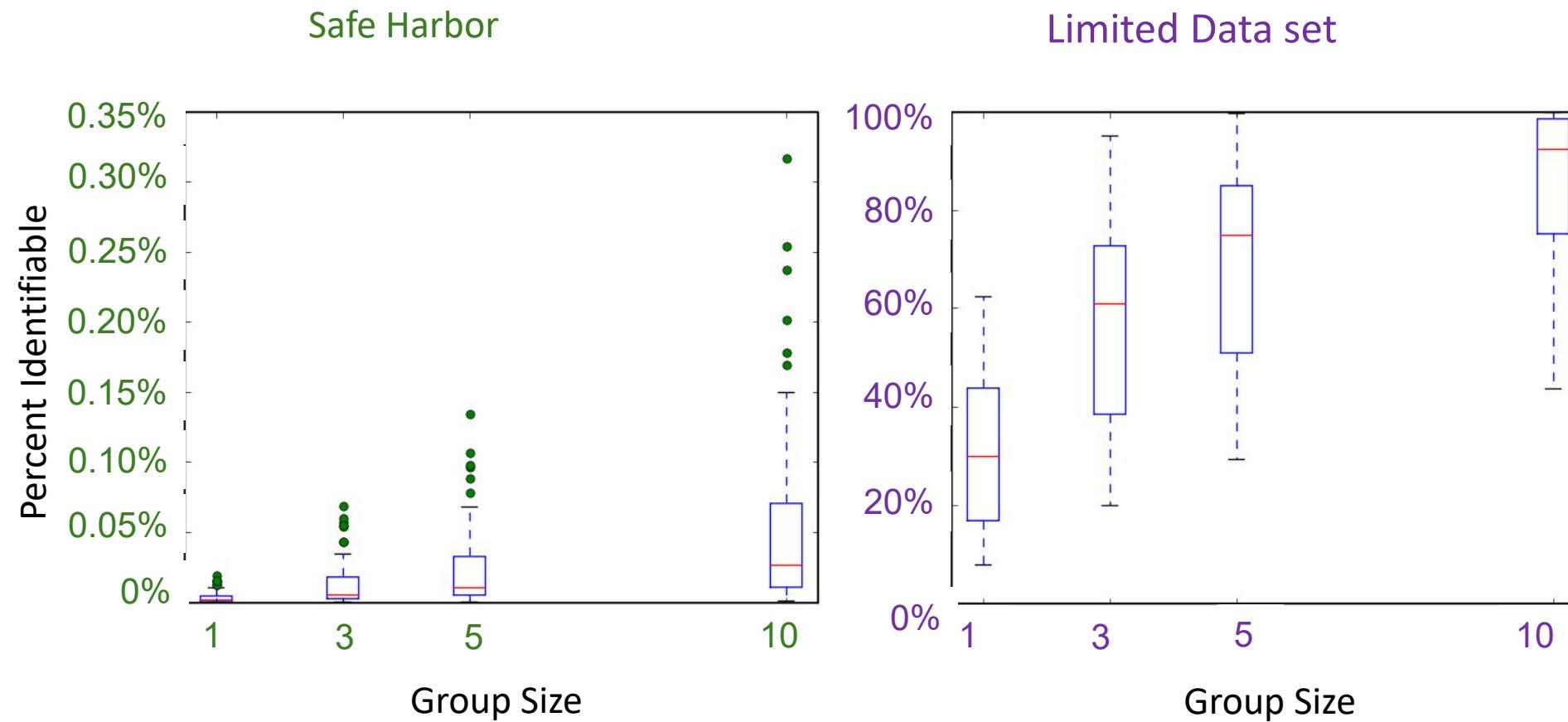


Tennessee

Case Study: Tennessee



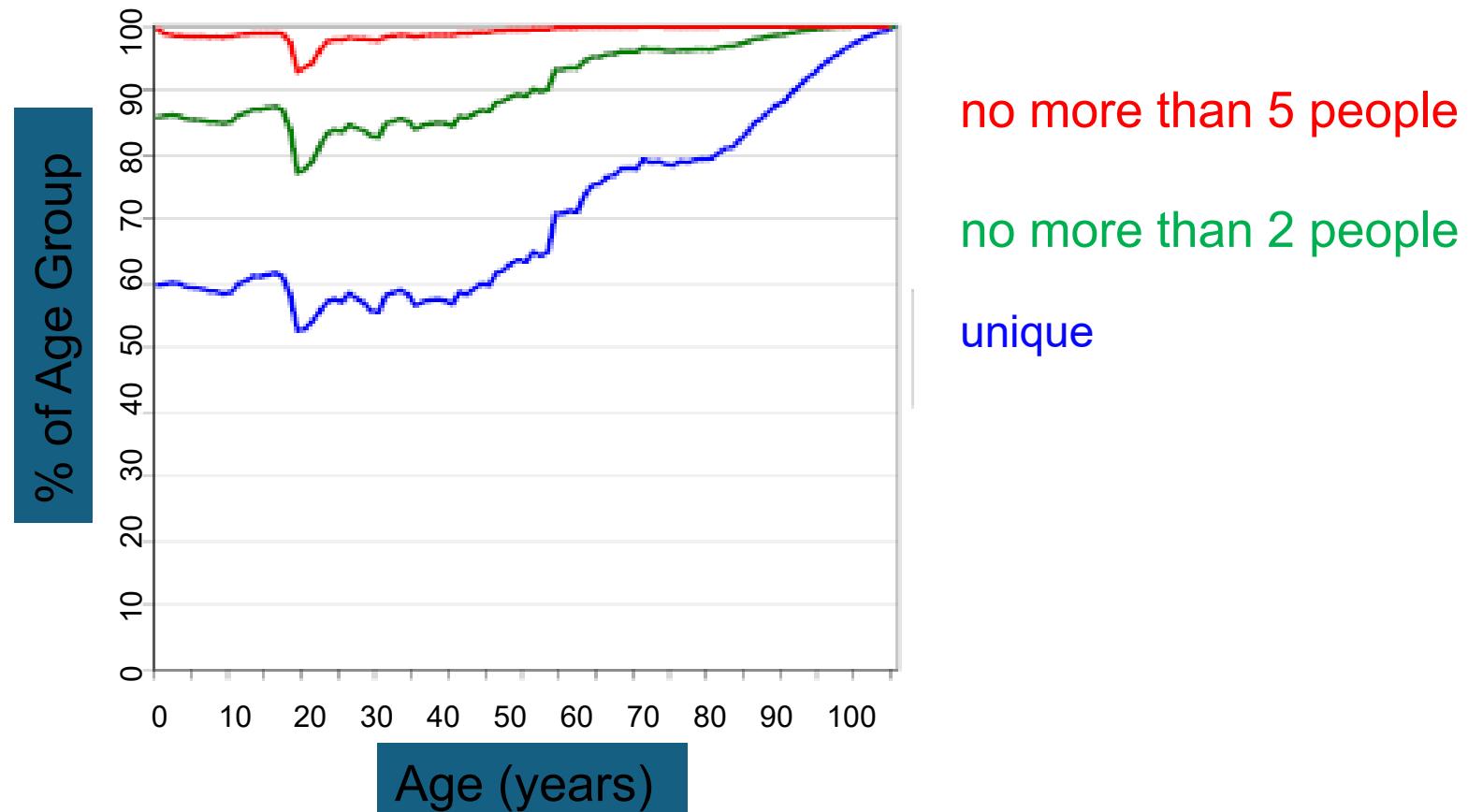
All U.S. States



K. Benitez and B. Malin. Evaluating re-identification risks with respect to the HIPAA Privacy Rule. JAMIA. 2010; 17: 169-177.

Beyond Uniqueness - Golle

- Given {Date of Birth, Gender, Zip}, grouped by age



Readings due on November 12

- **None.**
- Optional
 - None.

Feedback Survey

- One thing you learned or felt was valuable from today's class & reading
- Muddiest point: what, if anything, feels unclear, confusing or “muddy”
- <https://www.wjx.cn/vm/hX0mlro.aspx>

BME2133 Class Feedback Survey

