
Medical Data Privacy and Ethics in 
the Age of Artificial Intelligence

Lecture 10: Re-identification Risk of 
Health Records

Zhiyu Wan, PhD (wanzhy@shanghaitech.edu.cn)

Assistant Professor of Biomedical Engineering

ShanghaiTech University

November 4, 2025

BME2133: Lecture 10  © 2025 Zhiyu Wan 1



Learning Objectives of This Lecture

• Know the difference between de-identification and anonymity
• AOL case

• Hospital discharge record case

• Know how to estimate uniqueness bounds
• Threshold approach

• Probabilistic approach
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Terminology

• Explicit identifier: features that permit a direct communication with 
an individual / entity

• Quasi-identifier: features that, in combination, permit the indirect 
recognition of an individual / entity
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Adapted from Dr. Malin’s slides.



The             Search Log Case of 2006

Goal: Support web information retrieval research
• 650k customers, 20 mil. queries, 3 mo. period

• Names replaced with persistent pseudonyms
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Name Query Date Time

John Doe Books 1/2/05 16:52

Bob Smith Payscale 1/4/05 23:41

John Doe Porn 1/8/05 03:15

Pseudonym

1

2

1

Name



Queries
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User 2178

foods to avoid when 

breast feeding

3482401

calorie counting

User 3483689

Time after time

User 3505202

depression and medical leave

7268042

fear that spouse 

contemplating cheating

User 47122

Child porno

User 31350

How to kill oneself with gas

User 3483689

Wind beneath my wings



User 4417749 issued hundreds of searches
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Numb fingers

60 single men

Dog that urinates on 

everything

Last name = “Arnold”

Homes sold in shadow lack 

subdivision gwinnett county 

georgia

Hand tremors

Nicotine effects on the 

body

bipolarDry mouth

Landscapers in 

Lilburn (Georgia)

Barbaro & Zeller. A face exposed for AOL searcher no. 4417749.

New York Times.  Aug 9, 2006.



User 4417749 issued hundreds of searches
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Numb fingers

60 single men

Dog that urinates on 

everything

Last name = “Arnold”

Homes sold in shadow lack 

subdivision gwinnett county 

georgia

Hand tremors

Nicotine effects on the 

body

bipolarDry mouth

Landscapers in 

Lilburn (Georgia)Thelma Arnold

& Dudley

Barbaro & Zeller. A face exposed for AOL searcher no. 4417749.

New York Times.  Aug 9, 2006.
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July 2006

Mid-

August 2006

Late

August  2006

Sept 

2006

Early

August 2006

AOL CTO resigns

Researcher & Project

Manager dismissed

Class Action Law

Suit Filed

Researcher posts search queries of ~650k users to

research.aol.com

AOL  removes dataset

NY Times Article published



The Netflix Challenge (2008-2009)

• Netflix published movie selections of ~450,000 pseudonymized 
subscribers

• Re-identification via uniqueness of movie combinations

• Class action filed December 2009
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A. Narayanan & V. Shmatikov. IEEE Security and Privacy Conference. 2008.

Movies

Name

Location

Extra Movie

Reviews

Internet Movie 
Database

Extra Movies 
Watched

Netflix Challenge



• How would you measure 
identifiability of the AOL dataset?

• How would you protect the 
identities of individuals in the AOL 
dataset?
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A Data Detective Method: Direct Linkage

1. Uses the combination of attributes to determine the uniqueness of an 

entity in a dataset

2. Second dataset with identified subjects is used to make the re-

identification by drawing inferences between the two datasets on the 

related attributes

3. The attributes do not have to be equal, but there must exist some ability 

for inference of between attributes.
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Healthcare Reform At Work

• In 1997, 44 of 50 states collected and disseminated hospital discharge 
data

• In 2019, its 49 of 50 states “ “ 

• Attributes recommended by National Association of Health Data 
Organizations for disclosure
❑Patient Zip Code
❑Patient Birth Date
❑Patient Gender
❑Patient Racial Background
❑Patient Number
❑Visit Date
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J. Schoenman et al. The value of hospital discharge databases. NORC & NAHDO. 2005.http://www.hcup-us.ahrq.gov/reports/final_report.pdf

❑ Principle Diagnosis Codes (ICD-9)

❑ Procedure Codes

❑ Physician ID Number

❑ Physician Zip Code

❑ Total Charges
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Case Study – “Quasi-identifier”
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Zip Code

Birthdate

Gender

Ethnicity

Visit date

Diagnosis

Procedure

Medication

Total charge

Hospital Discharge Data

Back in the ‘90s

L. Sweeney. Journal of Law, Medicine, and Ethics. 1997.



Case Study – “Quasi-identifier”
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Zip Code

Birthdate

Gender

Name

Address

Date registered

Party affiliation

Date last voted

City of Cambridge, MA Voter Registration Records

Back in the ‘90s

L. Sweeney. Journal of Law, Medicine, and Ethics. 1997.



Case Study – “Quasi-identifier”
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Zip Code

Birthdate

Gender

Name

Address

Date registered

Party affiliation

Date last voted

Voter List

Ethnicity

Visit date

Diagnosis

Procedure

Medication

Total charge

Hospital Discharge Data

Re-identification 
of William Weld

L. Sweeney. Journal of Law, Medicine, and Ethics. 1997.



Discharge Database Users

• Users are diverse
• Government agencies

• Provider associations and individual health care providers

• Health care insurers and large health care purchasers (e.g., self-insuring companies)

• Policymakers

• *Researchers*

• Private-sector (e.g., data consolidators / brokers)

• Policy deliberations
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J. Schoenman et al. The value of hospital discharge databases. NORC & NAHDO. 2005.http://www.hcup-us.ahrq.gov/reports/final_report.pdf



Discharge Database Findings

• Public safety and injury surveillance / prevention

• Public health, disease surveillance, and disease registries

• Public health planning & community assessments

• Public reporting for informed purchasing & comparative reports

• Quality assessment & performance improvement

• Health services & health policy research

• Private sector analysis
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J. Schoenman et al. The value of hospital discharge databases. NORC & NAHDO. 2005.http://www.hcup-us.ahrq.gov/reports/final_report.pdf



HCUP

• Agency for Healthcare Research & Quality (AHRQ)
• Sponsors the Healthcare Cost and Utilization Project (HCUP)

• Integrates state-level data collections

• creates a uniformly formatted national information resource of discharge-level health care data

• HCUP Training
• https://www.hcup-us.ahrq.gov/tech_assist/dua.jsp

• Modeling the identifiability of Nationwide Inpatient Sample (NIS)
• Do not re-identify people.

• Calculate the re-identification risk given population estimates
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How much Identification is There?

• Linkage model provides a route to re-identify people

• It does not indicate the number of people that are at risk for re-
identification

• This requires quantifiable methods
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Counting

• Quasi-identifier Q = {q1, …, qn}

• Ex: {Date of Birth, Gender, 5-Digit Zip Code}

• Each attribute qi has a set of associated values
• Cardinality to represent set size: |qi|

• Ex: 5-digit Zip Code has maximum-sized value set {00000, …, 99999} and thus 
|5-digit Zip| = 100000

• Maximum number of quasi-identifying values in a population is:
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
=

n

i

iq
1



Naïve Risk Analysis

• Dirichlet drawer principle (a.k.a.“Pigeon-hole principle”)

• Population has size n

• Number of quasi-ID values is m

• Principle: There is at least one quasi-ID value with n/m individuals 
from the population

• Proof by contradiction
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Application to Privacy

• Imagine you have a population of 100,001 individuals

• The age range is [0,99]

• There are 500 zip codes in the area

• There are two genders {Male, Female}

• Is there a portion of the population that can NOT be unique?

• Quasi-ID size: 100*500*2 = 100,000

• Dirichlet → 100,001 / 100,000 = 2
• At least one quasi-id value with 2 assigned person
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Application to Privacy

• Imagine you have a population of 100,001 individuals

• The age range is [0,50]

• There are 50 zip codes in the area

• There are two genders {Male, Female}

• Is there a portion of the population that can NOT be unique?

• Quasi-ID size: 50*50*2 = 5,000

• Dirichlet → 100,001 / 5,000 = 21
• At least one quasi-id value with 21 assigned persons
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Bounds

• n people

• m quasi-id values

• What is the maximum number of people that can be uniquely 
identified?
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Threshold Approach (Sweeney 2000)

• Subdivide a population by its quasi-identifier

• Calculate the number of “uniques” in the population

• Given n attributes in the QID, uniques is # of QID values with totals equal to 1

• Quasi-identifier = {DOB, Zip, Gender}

• 3-dimensional contingency table (compressed view)
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DOB / Gender

Male Female

dob 1 dob 2 … dob n dob 1 dob 2 … dob n

ZIP zip1 Cell = 1?

zip2

…

zip m



Estimation

• Sometimes, you don’t have the exact details of what adversary has access to
• e.g., you disclose a sample with {dob, gender, zip}, but don’t know the full population values

• But you may have access to aggregates
• E.g., Census counts for {year of birth, gender, county}…

• One way to measure the identifiability is to estimate detailed data from the 
aggregates

• Year of birth → Date of Birth
• Uniform distribution of dates

• Equal likelihood of 365 days
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Conversion

• {Year of Birth, ZIP} → {Date of Birth, ZIP}

• One option: Equal distribution of values across the cells

BME2133: Lecture 10  © 2025 Zhiyu Wan 29

Birth Year

1980

ZIP

zip1 12000

zip2 50000

…

zip m 10000

Birthdate
SUM

1/1/80 … 12/31/80

ZIP

zip1 12000 / 365 12000/365 12000

zip2 50000 / 365 50000/365 50000

…

zip m 10000 / 365 10000 /365 10000



{date of birth, gender, 5-digit ZIP}
(1990 US Census)
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Approximately 87% of the 

total population was 

estimated to be unique

L. Sweeney. 2000.



{date of birth, gender, 5-digit ZIP}
(1990 US Census)
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L. Sweeney. 2000.

ZIP 60623, 112,167 
people, 11%, not 0% 
insufficient # above 
the age of 55 living 
there. 
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{date of birth, gender, 5-digit ZIP}
(1990 US Census)
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L. Sweeney. 2000.

ZIP 11794, 5418 people, 
primarily between 19 and 
24 (4666 of 5418 or 86%), 
only 13%. 
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Beyond the 87% Stat

BME2133: Lecture 10  © 2025 Zhiyu Wan 35

Quasi-Identifier Uniques

Date of Birth Only 12%



Beyond the 87% Stat
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Quasi-Identifier Uniques

Date of Birth Only 12%

Date of Birth & Gender 29%



Beyond the 87% Stat
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Quasi-Identifier Uniques

Date of Birth Only 12%

Date of Birth & Gender 29%

Date of Birth & 5-Digit Zip Code 69%



Beyond the 87% Stat
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Quasi-Identifier Uniques

Date of Birth Only 12%

Date of Birth & Gender 29%

Date of Birth & 5-Digit Zip Code 69%

Date of Birth & Full Postal Code 97%



A Model for Beyond Uniqueness

• D → the set of demographics
e.g., {Date of Birth, Gender, Zip Code}

• d → a specific value combination over the set of demographics
e.g., [1/2/1903, M, 65432]

• P → a population of individuals
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G. Skinner and M. Elliot. Skinner G, Elliot M. A measure of disclosure risk for microdata. Journal of the Royal Statistical Society (Series B). 
2002; 64(Part 4):855-867.



A Model for Beyond Uniqueness

• xd →the number of people in P with demographic d

• Fi →the number of demographics with |xd| = i.

• F1 = the number of demographics that correspond to exactly 1 person

• F2 = the number of demographics that correspond to exactly 2 people
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Example
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Record Age City Gender Race

1 25 aaa M Black

2 26 aaa M Black

3 25 aaa F White

4 24 zzz M White

5 22 zzz F Asian

6 22 zzz F White



{Age, City}
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Age City Xd

25 aaa 2

26 aaa 1

22 zzz 2

24 zzz 1

24 aaa 1

Record Age City Gender Race

1 25 aaa M Black

2 26 aaa M Black

3 25 aaa F White

4 24 zzz M White

5 22 zzz F Asian

6 22 zzz F White

7 24 aaa F White



Uniqueness Per City
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Age City Xd

25 aaa 2

26 aaa 1

22 zzz 2

24 zzz 1

24 aaa 1

City Percent Unique

aaa 2 / 4 = 50%

zzz 1 / 3 = 33%

0

0.1

0.2

0.3

0.4

0.5

0.6
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Distribution Model for All Values
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Age City Xd

25 aaa 2

26 aaa 1

22 zzz 2

24 zzz 1

24 aaa 1

i Fi

1 3

2 2

0

1

2

3

4

0 1 2 3
F i

i



Risk Analysis

• Let t be a threshold equal to the minimum number of people to which 
a demographic should correspond

• If privacy “threshold” is t, then the total number of people at risk is

• Then, the fraction of the population at risk is
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
=

t

i

iiF
1

P

iF
t

i

i
=1



Distribution Model
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• t = 1:

 3*1 = 3 people at risk 
~43% of population

• t = 2, there are 3*1 + 2*2 = 
7 people at risk ~100% of 
population

0

1

2

3

4

0 1 2 3

F i

i



Re-identification ?
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Population

Netflix
Sample

IMDB
Sample



Re-identification ?

BME2133: Lecture 10  © 2025 Zhiyu Wan 48

Population

IMDB
Sample

Netflix
Sample



Re-identification ?
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Population

Netflix
Sample

IMDB
Sample



Randomized (Golle ‘06)

• Don’t always have exact knowledge of what a data recipient has access to
• Disclose sample with {dob, gender, zip}, but don’t know the population’s values

• May know population counts, such as
• U.S. Census aggregates for {year of birth, gender, county}

• Conversion: {Year of Birth, ZIP} → {Date of Birth, ZIP}

• Alternative option: Randomly allocate 12,000 “people” to 365 cells
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Birth Year

1980

ZIP

zip1 12000

zip2 50000

…

zip m 10000

Birthdate
SUM

1/1/80 … 12/31/80

ZIP

zip1 random random 12000

zip2 random random 50000

…

zip m random random 10000



It’s an Occupancy Problem (Golle ‘06)
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• n people in aggregated bin

• b disaggregated bins

• the expected # of bins with exactly i people

• Total number of people in a group of size less than k
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𝑝𝑖 1 − 𝑝 𝑛−𝑖Binomial Distribution

𝑛

𝑖
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𝑖! 𝑛 − 𝑖 !



Sample Calculation
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Quasi-ID values (Bins)

2 4 256 512 1024 8192

Population 
(Balls)

2 0.5 2.25 254.01 510.00 1022.00 8190.00

4 0.125 1.26 252.03 508.02 1020.01 8188.00

64 1.08 x 10-19 4.04 x 10-8 199.37 451.84 961.96 8128.25

1024 0.00 0.00 4.69 69.29 376.71 7229.41

2048 0.00 0.00 0.09 9.38 138.58 6379.94

Expected Number of  Quasi-ID values with 0 people



Sample Calculation
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Expected Ratio of  Quasi-ID values with 0 people

2 4 256 512 1024 8192

2 0.250 0.563 0.992 0.996 0.998 1.000

4 0.063 0.315 0.984 0.992 0.996 1.000

64 0.000 0.000 0.779 0.883 0.939 0.992

1024 0.000 0.000 0.018 0.135 0.368 0.882

2048 0.000 0.000 0.000 0.018 0.135 0.779

Quasi-ID values (Bins)

Population

(Balls)



Poisson Approximation

• When 𝑏 → ∞, 𝑛 → ∞, 
𝑛

𝑏
= 𝜆
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Poisson Distribution



Birthday Problem

• Assume birthday is uniformly distributed at random over the year.

• If n people are born in a year, the expected number of days on which 
exactly 1 person born is
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Golle’s Approach 

• Special case of general equation

• If n people are born in a year, the expected # of days on which exactly 
k people born is
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Golle’s Findings

• Results with the 2000 Census
• Table PCT12: year of birth

• Counties + County Equivalents

• 33,233 Zip Code Tabulation Areas (ZCTAs), DC, plus Puerto Rico

• Uniqueness Calculations
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Variable 5-Digit Zip County

Birth Year 0.2% 0.0%

Birth Year & Month 4.2% 0.2%

Birth Date 63.3% 14.8%



Application Challenges to Computations 

• No exact closed form expression for the truncated binomial

• Can apply recursion to speed up exact computation
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Attacks on Demographics
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• Use population counts from 
the US Census

• Apply a statistical model to 
estimate distribution of 
disaggregate demographics

• It’s not perfect, but it’s a start.

Safe Harbored
Clinical Records

Identified
Clinical Records

Limited Data Set
Clinical Records

Identified
Population Records

K. Benitez and B. Malin. Evaluating re-identification risks with respect to the HIPAA Privacy Rule. JAMIA. 2010; 17: 169-177.



Comparison

• {Date of Birth, Gender, Race, County}
• Date predicted from Year
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Case Study: Tennessee
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Safe Harbor(-like)
{Race, Gender, Year (of Birth), State}

Limited Dataset
{Race, Gender, Date (of Birth), County}

Group size = 33



All U.S. States
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Safe Harbor Limited Data set
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K. Benitez and B. Malin. Evaluating re-identification risks with respect to the HIPAA Privacy Rule. JAMIA. 2010; 17: 169-177.



Beyond Uniqueness - Golle

• Given {Date of Birth, Gender, Zip}, grouped by age
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Readings due on November 12

▪ None.

▪ Optional
❑None.
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Feedback Survey

• One thing you learned or felt was 
valuable from today’s class & 
reading

• Muddiest point: what, if anything, 
feels unclear, confusing or 
“muddy”

• https://www.wjx.cn/vm/hX0mIro.aspx
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