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Learning Objectives of This Lecture

* Know the difference between de-identification and anonymity
* AOL case
* Hospital discharge record case

* Know how to estimate uniqueness bounds

* Threshold approach
* Probabilistic approach
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Terminology

* Explicit identifier: features that permit a direct communication with
an individual / entity

* Quasi-identifier: features that, in combination, permit the indirect
recognition of an individual / entity

Adapted from Dr. Malin’s slides.
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The AOL & Search Log Case of 2006

Goal: Support web information retrieval research
* 650k customers, 20 mil. queries, 3 mo. period
* Names replaced with persistent pseudonyms

Pseudonym |Name  |Query _|Date |Time_
T N Books  1/2/05 16:52
D Poyscale  1/4/05 23:41
D o 1/8/05 03:15
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Queries
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Barbaro & Zeller. A face exposed for AOL searcher no. 4417749.
New York Times. Aug 9, 2006.

User 4417749 issued hundreds of searches

qGO single men _

Hand tremors J

Landscapers in

Lilburn (Georgia)
Last name = “Arnold” J g
Homfes_, ?OId n _shadow E15S Nicotine effects on the
subdivision gwinnett county body
gracaia :
Dry mouth bipolar J
| 4
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Barbaro & Zeller. A face exposed for AOL searcher no. 4417749.
New York Times. Aug 9, 2006.

User 4417749 issued hundreds of searches

Thelma Arnold
& Dudley

Homes sold s
subdivision ¢




AOL

©>

Class Action Law

Suit Filed

AOL CTO resigns

Researcher & Project
Manager dismissed

Mid 2006

August 2006
Early .
August 2006 ate
August 20006
July 2006

AOL removes dataset

NY Times Article published

Researcher posts search queries of ~650k users to
research.aol.com
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The Netflix Challenge (2008-2009)

* Netflix published movie selections of ~¥450,000 pseudonymized
subscribers

* Re-identification via uniqueness of movie combinations
* Class action filed December 2009

Name

Location

Extra Movies
Watched

Extra Movie

Reviews

Netflix Challenge  Internet Movie
Database

A. Narayanan & V. Shmatikov. IEEE Security and Privacy Conference. 2008.
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* How would you measure

identifiability of the AOL dataset?

* How would you protect the

identities of individuals in the AOL

dataset?
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Or es Here are more stories related to your searc
Ecom & 2 S

EUROPE ASIA e Netflix Settles Privacy Lawsuit, Cang

See all related stories =

Home Lists Business Tech

Breakth

The Firewall

Filtering ideas in the world of security.

Netflix Settles Privacy Lawsuit, Cancels
Prize Sequel

Y Taylor Buley Bio Email [ § share B
: Taylor Buley is a staff writer and 7 I

editorial developer for Forbes

On Friday, Metflix announced on its corporate blog that it has settled a
lawsuit related to its Netflix Prize, a §1 million contest that challenged
machine learning experts to use Netflix's data to produce better
recommendations than the movie giant could serve up themselves.
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THE SIMPLE PROCESS OF RE-
IDENTIFYING PATIENTS IN
PUBLIC HEALTH RECORDS

In late 2016, doctors’ identities were decrypted in an open dataset

\. W\ "(ﬂ\‘:\\\\\‘\\"v\\'\\'"“\ \‘\“‘
AL . \

\‘

of Australian medical billing records. Now patients’ records have

also been re-identified - and we should be talking about it

By Dr Vanessa Teague, Dr Chris Culnane a

RE-IDENTIFYING PATIENTS

In August 2016, Australia’s federal Depar
records of about 2.9 million Australians d
Medicare Benefits Scheme (MBS) and thq
containing 1 billion lines of historical hed

We found that patients can be re-identified, without decryption, through a process

of linking the unencrypted parts of the record with known information about the

cent of the population.

individual.

Our findings replicate those ofGIaOJiother de-identified datasets:

WA few mundane facts taken together often suffice to isolate an individual,

These longitudinal records were de-iden

person’s identity from being connected

the government’s open data website as p

« Some patients can be identified by name from publicly available information.

» Decreasing the precision of the data, or perturbing it statistically, makes re-

1dentification gradually harder at a substantial cost to utility.




A Data Detective Method: Direct Linkage

1. Uses the combination of attributes to determine the uniqueness of an
entity in a dataset

2. Second dataset with identified subjects is used to make the re-
identification by drawing inferences between the two datasets on the
related attributes

3. The attributes do not have to be equal, but there must exist some ability
for inference of between attributes.
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Healthcare Reform At Work

* In 1997, 44 of 50 states collected and disseminated hospital discharge
data

* |n 2019, its 49 of 50 states “ “

 Attributes recommended by National Association of Health Data
Organizations for disclosure

QPatient Zip Code Principle Diagnosis Codes (ICD-9)
QPatient Birth Date Procedure Codes

dPatient Gender Physician ID Number

(Patient Racial Background Physician Zip Code

dPatient Number Total Charges

dVisit Date

J. Schoenman et al. The value of hospital discharge databases. NORC & NAHDO. 2005.http://www.hcup-us.ahrq.gov/reports/final_report.pdf
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Case Study — “Quasi-identifier”
Back in the ‘90s

Ethnicity
Visit date  Zip Code

Diagnosis  Birthdate
Gender

Procedure
Medication

Total charge

Hospital Discharge Data

L. Sweeney. Journal of Law, Medicine, and Ethics. 1997.
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Case Study — “Quasi-identifier”
Back in the ‘90s

Name

Address

Z1p Code
Birthdate

Date registered
Gender

Party affiliation

Date last voted

City of Cambridge, MA Voter Registration Records

L. Sweeney. Journal of Law, Medicine, and Ethics. 1997.
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Case Study — “Quasi-identifier”

Re-identification
of William Weld

Name

Address

Ethnicity

Visit date

Zip Code\ Date registered

Birthdate

Diagnosis

Procedure Party affiliation

Date last voted

Medication

Total charge

Hospital Discharge Data Voter List

L. Sweeney. Journal of Law, Medicine, and Ethics. 1997.
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Discharge Database Users

e Users are diverse

 Government agencies

* Provider associations and individual health care providers

* Health care insurers and large health care purchasers (e.g., self-insuring companies)
* Policymakers

e *Researchers*™

* Private-sector (e.g., data consolidators / brokers)

* Policy deliberations

J. Schoenman et al. The value of hospital discharge databases. NORC & NAHDO. 2005.http://www.hcup-us.ahrq.gov/reports/final_report.pdf
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Discharge Database Findings

* Public safety and injury surveillance / prevention
* Public health, disease surveillance, and disease registries
* Public health planning & community assessments

e Public reporting for informed purchasing & comparative reports
* Quality assessment & performance improvement

* Health services & health policy research

* Private sector analysis

J. Schoenman et al. The value of hospital discharge databases. NORC & NAHDO. 2005.http://www.hcup-us.ahrq.gov/reports/final_report.pdf
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HCUP

* Agency for Healthcare Research & Quality (AHRQ)

* Sponsors the Healthcare Cost and Utilization Project (HCUP)

* Integrates state-level data collections
e creates a uniformly formatted national information resource of discharge-level health care data

* HCUP Training
* https://www.hcup-us.ahrq.gov/tech_assist/dua.jsp

* Modeling the identifiability of Nationwide Inpatient Sample (NIS)
* Do not re-identify people.
* Calculate the re-identification risk given population estimates

BME2133: Lecture 10 ©2025 Zhiyu Wan
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How much lIdentification is There?

* Linkage model provides a route to re-identify people

* It does not indicate the number of people that are at risk for re-
identification

* This requires quantifiable methods

BME2133: Lecture 10 ©2025 Zhiyu Wan

21



Counting

* Quasi-identifier 0= {q,, ..., q,}
e Ex: {Date of Birth, , }

 Each attribute g, has a set of associated values

 Cardinality to represent set size: |g|

* Ex: 5-digit Zip Code has maximum-sized value set {00000, ..., 99999} and thus
| 5-digit Zip| = 100000

* Maximum number of quasi-identifying values in a population is:

| 1z

i=1

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Naive Risk Analysis

* Dirichlet drawer principle (a.k.a.“Pigeon-hole principle”)
e Population has size n
* Number of quasi-ID values is m

* Principle: There is at least one quasi-ID value with | n/m | individuals
from the population

* Proof by contradiction

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Application to Privacy

* Imagine you have a population of 100,001 individuals

* The age range is [0,99]

* There are 500 zip codes in the area

* There are two genders {Male, Female}

* |s there a portion of the population that can NOT be unique?
* Quasi-ID size: 100*500*2 = 100,000

e Dirichlet > [ 100,001 / 100,000 | = 2

* At least one quasi-id value with 2 assigned person

BME2133: Lecture 10 ©2025 Zhiyu Wan

24



Application to Privacy

* Imagine you have a population of 100,001 individuals

* The age range is [0,50]

* There are 50 zip codes in the area

* There are two genders {Male, Female}

* |s there a portion of the population that can NOT be unique?
e Quasi-ID size: 50*50*2 = 5,000

» Dirichlet = [ 100,001 /5,000 = 21

e At least one quasi-id value with 21 assigned persons

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Bounds

* n people
* m quasi-id values

* What is the maximum number of people that can be uniquely
identified?

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Threshold Approach (sweeney 2000)

Subdivide a population by its quasi-identifier

Calculate the number of “uniques” in the population

Given n attributes in the QID, uniques is # of QID values with totals equal to 1
Quasi-identifier = {DOB, Zip, Gender}

3-dimensional contingency table (compressed view)

DOB / Gender

Male Female
dob 1 dob2 .. dobn dob 1 dob2 .. dobn
ZIP zipl Cell =17
zip2

zipm

27



Estimation

* Sometimes, you don’t have the exact details of what adversary has access to
* e.g., you disclose a sample with {dob, gender, zip}, but don’t know the full population values

* But you may have access to aggregates
e E.g., Census counts for {year of birth, gender, county}...

* One way to measure the identifiability is to estimate detailed data from the
aggregates

* Year of birth 2 Date of Birth

 Uniform distribution of dates
* Equal likelihood of 365 days

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Conversion

e {Year of Birth, ZIP} = {Date of Birth, ZIP}
* One option: Equal distribution of values across the cells

Birth Year

1980
zip1 12000
zip2 50000
ZIP

zipm 10000

1/1/80 12/31/80
zipl 12000 / 365 12000/365 12000
zip2 50000 / 365 50000/365 50000

BTN

ZIP

zipm 10000 /365 10000 /365 10000

BME2133: Lecture 10 ©2025 Zhiyu Wan
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{date of birth, gender, 5-digit ZIP}
(1990 US Census)

L. Sweeney. 2000.

% pop ldentifiable

1.2

1

Approximately 87% of the
total population was
estimated to be unique

20000 AD000 ROO00 aoood  ooaod 120000
ZIP Population
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{date of birth, gender, 5-digit ZIP}
(1990 US Census)

1.2

ZIP 60623, 112,167
people, 11%, not 0%
insufficient # above
the age of 55 living
there.

1

% pop ldentifiable

0 20000 AD000 ROO00 aoood  ooaod 120000
ZIP Population

L. Sweeney. 2000.
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Naperville-Joliet metro area.
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{date of birth, gender, 5-digit ZIP}
(1990 US Census)

L. Sweeney. 2000.

% pop ldentifiable

1.2

1

0.8 -

20000 AD000 ROO00 ao000
ZIP Population

ZIP 11794, 5418 people,
primarily between 19 and
24 (4666 of 5418 or 86%),
only 13%.

100000 120000
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Beyond the 87% Stat

Quasi-ldentifier m

Date of Birth Only 12%
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Beyond the 87% Stat

Quasi-ldentifier m

Date of Birth Only 12%
Date of Birth & Gender 29%

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Beyond the 87% Stat

Quasi-ldentifier | Uniques _
Date of Birth Only 12%
Date of Birth & Gender 29%
Date of Birth & 5-Digit Zip Code 69%

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Beyond the 87% Stat

Quasi-ldentifier m

Date of Birt
Date of Birt
Date of Birt
Date of Birt

N Only
n & Gender
n & 5-Digit Zip Code

n & Full Postal Code

12%
29%
69%
97%
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A Model for Beyond Uniqueness

* D = the set of demographics
e.g., {Date of Birth, Gender, Zip Code}

* d 2 a specific value combination over the set of demographics
e.g., [1/2/1903, M, 65432]

* P - a population of individuals

G. Skinner and M. Elliot. Skinner G, Elliot M. A measure of disclosure risk for microdata. Journal of the Royal Statistical Society (Series B).
2002; 64(Part 4):855-867.
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A Model for Beyond Uniqueness

* x, 2the number of people in P with demographic d

» F.>the number of demographics with |x | = i.
* I, = the number of demographics that correspond to exactly 1 person

* I, =the number of demographics that correspond to exactly 2 people

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Example

mm

o U B~ W N

26
25
24
22
22

M
aaa M
aaa F
222 M
222 F
222 F

BME2133: Lecture 10 ©2025 Zhiyu Wan

Black
Black
White
White
Asian
White
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{Age, City}

mm

—— ee | Gy | %,

2 26 aaa M Black

25 aaa 2
3 25 aaa F White 6 a3 1
4 24 222 M White 29 . 5
5 22 222 F Asian 24 277 1
6 22 222 F White 24 a3 1
7 24 aaa F White
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Unigueness Per City

aaa 2/4=50%
Age Cit
| Age | City | X, /32 33%
25 aaa 2
26 aaa 1
o 06 -
22 277 2 5 05 - .
24 777 1 S 04 -
£ 03 - ¢
24 aaa 1 % 02 -
a2 0.1 -
@]
.?_- O | [
(@]
X 0 1 2
Zip Code
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Distribution Model for All Values

| Age | City | X,
25 aaa 2

26
22
24
24

dad

277

277

ddd

B R N R

Fi
O L N W PpH
[ I B
*
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Risk Analysis

* Let t be a threshold equal to the minimum number of people to which
a demographic should correspond

* If privacy “threshold” is ¢, then the total number of people at risk is
5
> i
i=1
* Then, the fraction of the population at risk is
t
>
i=I

P

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Distribution Model

e t=1:

3*1 = 3 people at risk
~43% of population

e t=2,thereare 3*1 +2%*2 =

Fi
O R N W Pp»
|

7 people at risk ~100% of
population 0

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Re-identification ?

Population

Netflix
Sample
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Re-identification ?

Population

BME2133: Lecture 10 ©2025 Zhiyu Wan 48



Re-identification ?

Population

Netflix

Sample
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Randomized (Golle ‘06)

Don’t always have exact knowledge of what a data recipient has access to
* Disclose sample with {dob, gender, zip}, but don’t know the population’s values

May know population counts, such as

* U.S. Census aggregates for {year of birth, gender, county}

Conversion: {Year of Birth, ZIP} = {Date of Birth, ZIP}

Alternative option: Randomly allocate 12,000 “people” to 365 cells

Birth Year

1980
zipl 12000
zip2 50000
ZIP

zipm 10000

1/1/80 .. 12/31/80
random random
random random
random random

BME2133: Lecture 10 ©2025 Zhiyu Wan

12000
50000

10000
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It’s an Occupancy Problem (colle ‘06
Pix =0 =(])pi—p

* n people in aggregated bin (n) ol

b disaggregated bins i/ il(n—1)!
n .

* the expected # of bins with exactly i people fl(n) — ( .jb”’ (b _ 1)”‘1
i

BME2133: Lecture 10 ©2025 Zhiyu Wan 51



Sample Calculation

2 4 256 512 1024
2 0.5 2.25  254.01 510.00 1022.00
_ 4 0125 1.26  252.03 508.02 1020.01
:’:;:;')""tw" 64 1.08x 109 4.04 x 10 199.37 451.84 961.96
1024  0.00 000 469 69.29 376.71

2048  0.00 000 009 9.38 13858

Expected Number of Quasi-ID values with 0 people

BME2133: Lecture 10 ©2025 Zhiyu Wan

8192
8190.00
8188.00
8128.25
7229.41
6379.94
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Sample Calculation

Quasi-ID values (Bins)

2 4 256 512 1024
2
Population 4
(Balls) 64

1024
2048

Expected Ratio of Quasi-ID values with O people

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Poisson Approximation

n

°Whenb—>00,n—>00,3=/1
14/ .
,g.(n):( ,jbw(b_l)n ,
l
e )
~ bh—
!

Poisson Distribution

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Birthday Problem

* Assume birthday is uniformly distributed at random over the year.

* If n people are born in a year, the expected number of days on which
exactly 1 person born is

364 )"

fi(n)=n* 365

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Golle’s Approach

» Special case of general equation

* If n people are born in a year, the expected # of days on which exactly

k people born is

fk(n)

()
3657364

K

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Golle’s Findings

e Results with the 2000 Census
* Table PCT12: year of birth

* Counties + County Equivalents
e 33,233 Zip Code Tabulation Areas (ZCTAs), DC, plus Puerto Rico

* Uniqueness Calculations
Birth Year 0.2% 0.0%
Birth Year & Month 4.2% 0.2%
Birth Date 63.3% 14.8%

BME2133: Lecture 10 ©2025 Zhiyu Wan
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Application Challenges to Computations

* No exact closed form expression for the truncated binomial

* Can apply recursion to speed up exact computation

Or Just use the Poisson to

approximate the result

Time(ms)

500 ~
450 A
400 A
350 -
300 -
250 A
200 A
150 -
100 -
50 -

0 -

—— Golle Original

—+— Reduced Calcs

8000 10000 12000

6000

0 2000 4000

Identifiability Bin Size (i)
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Attacks on Demographics

e Use population counts from
the US Census

e Apply a statistical model to
Identified estimate distribution of
Population Records disaggregate demographics

K. Benitez and B. Malin. Evaluating re-identification risks with respect to the HIPAA Privacy Rule. JAMIA. 2010; 17: 169-177.
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Comparison

e {Date of Birth, Gender, Race, County}
* Date predicted from Year

Identifiable

30000000

25000000

20000000

15000000

10000000

5000000

5000000 -
4500000 -
4000000
3500000
3000000
2500000
2000000
1500000 =o—golle (binomial)

--sweeney (uniform) 1000000 - --sweeney (uniform)

Identifiable

=o—golle (binomial)

500000 -
I T T 0 T T
1 100 10000 1 100 10000
log(k) log(k)
California Tennessee
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Case Study: Tennessee

Fraction of Tennessee's population

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Group size = 33

v

1001
2001
3001
4001
5001
6001
7001
3001
9001
10001
11001
12001
15001
14001
15001
16001
17001
18001
19001

Threshhold

Limited Dataset

{Race, Gender, Date (of Birth), County}

— Fraction of population
identifiable under
Limited Dataset

— Fraction of populatiion
identifiable under Safe
Harbor

Safe Harbor(-like)

{Race, Gender, Year (of Birth), State}
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All U.S. States

Safe Harbor

Percent Identifiable

K. Benitez and B. Malin. Evaluating re-identification risks with respect to the HIPAA Privacy Rule. JAMIA. 2010; 17: 169-177.
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0.25%
0.20% ¢
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0.05% |
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d; ﬂj———loooo e

Group Size

Limited Data set

100% T T
80% 4“ i
60% | T —
oo LT i
ol ] L
0% 4 3 5 10
Group Size

62



Beyond Uniqueness - Golle

e Given {Date of Birth, Gender, Zip}, grouped by age

—
no more than 5 people

no more than 2 people

unique

10 20 30 40 50 60 70 80 90 10

0

0O 10 20 30 40 50 60 70 80 90 100
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Readings due on November 12

= None.

= Optional
J None.

BME2133: Lecture 10 ©2025 Zhiyu Wan
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BME2133 Class
Feedback Survey

Feedback Survey

* One thing you learned or felt was
valuable from today’s class &
reading

* Muddiest point: what, if anything,
feels unclear, confusing or
llmuddyﬂ

* https://www.wjx.cn/vm/hX0mlro.aspx
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