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Learning Objectives of This Lecture

After this lecture, students should be able to:
• Know the concept of large language models
• Know the concept of prompt engineering
• Know the concept of fine-tuning
• Know some examples of LLM applications in health
• Know the security/privacy risks of large language models
• Know the fairness risks of large language models
• Know the way to mitigate these ethical risks of large language models
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Prompt and completions
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LLM

ModelPrompt

Where is Ganymade 
located in the solar systems

Context window
• Typically, a few 

1000 words

Completion

Where is Ganymade 
located in the solar systems

Ganyemede is a moon of 
Jupiter and is located in the 
solar system within 
Jupiter’s orbit.

Adapted from Coursera slides.



LLM use cases and tasks

• Essay Writing
• Summarization
• Translation
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LLM use cases and tasks

• Essay Writing
• Summarization
• Translation
• Code Writing
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LLM use cases and tasks

• Essay Writing
• Summarization
• Translation
• Code Writing
• Entity Extraction
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LLM use cases and tasks

• Essay Writing
• Summarization
• Translation
• Code Writing
• Entity Extraction
• Realtime query
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Scaling matters
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BERT
110M

GPT-3
175B

2020
GPT-4

1.76T = 1760B

20232018

2025
GPT-5
~18T



Transformers
• Scale efficiently
• Parallel process
• Attention to 

input meaning
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Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. Advances in neural information processing systems. 2017;30.

181,670 citations



Transformers
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Self-attention
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Transformers
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Transformers
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Transformers
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Transformers
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Transformers
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342 879

the teacher

432

taught

342

theInput:

Embedding

𝑋𝑋1

e.g., 
512

𝑋𝑋2 𝑋𝑋3 𝑋𝑋4



Transformers
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Multi-headed 
Self-attention

Multi-headed 
Self-attention

People entity relationships

Activities relationships

Word rhymes



Transformers
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Transformers
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Feed forward 
network

Feed forward 
network



Transformers
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P1 P2 … … … … … … … … … … … … … … … … Pn



Transformers
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Encoder
Encodes inputs (“prompts”) 

with contextual 
understanding and produces 
one vector per input token.

Decoder
Accepts input tokens and 

generates new tokens.



Transformers

• Classification models
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• GPTs



Prompting and prompt engineering
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LLM

ModelPrompt

Where is Ganymade 
located in the solar systems

Context window
• Typically, a few 

1000 words

Completion

Where is Ganymade 
located in the solar systems

Ganyemede is a moon of 
Jupiter and is located in the 
solar system within 
Jupiter’s orbit.



In-context learning (ICL) – zero shot inference
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LLM

ModelPrompt

Classify this review:
I loved this movie!
Sentiment:

Completion

Classify this review:
I loved this movie!
Sentiment: Positive

Zero-shot inference



In-context learning (ICL) – zero shot inference
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LLM

ModelPrompt

Classify this review:
I loved this movie!
Sentiment:

Completion

Classify this review:
I loved this movie!
Sentiment: eived a very 
nice book review

GPT-2



In-context learning (ICL) – one shot inference
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LLM

ModelPrompt

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this chair.
Sentiment:

Completion

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this chair.
Sentiment: Negative

One-shot inference



In-context learning (ICL) – few shot inference
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LLM

ModelPrompt

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this chair.
Sentiment: Negative

Classify this review:
This is not great.
Sentiment:

Completion

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this chair.
Sentiment: Negative

Classify this review:
This is not great.
Sentiment: Negative

Few-shot inference
5 - 6 Examples



Generative config – inference parameters
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Generative config – greedy vs. random 
sampling

• Greedy: The word/token with the highest 
probability is selected.

• Random(-weighted) sampling: select a token
using a random-weighted strategy across the
probabilities of all tokens.

• Here, there is a 20% chance that ‘cake’ will be 
selected, but ‘banana’ was actually selected.
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Generative config – inference parameters
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Generative config – top-k sampling

• Top-k: Select an output from the top-k results 
after applying random-weighted strategy using the 
probabilities
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Generative config – top-p sampling

• Top-p: Select an output using the random-
weighted strategy with the top-ranked consecutive 
results by probability and with a cumulative 
probability <= p.
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Generative config – inference parameters
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Generative config – temperature

BME2133: Lecture 20  ©2025 Zhiyu Wan 34



LLM project lifecycle
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Considering for choosing a model

BME2133: Lecture 20  ©2025 Zhiyu Wan 36

Pretrained 
LLM

Foundation Model

Custom 
LLM

Train your own model



LLM pre-training at a high level
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LLM

Model



Autoencoding models
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Encoder-
only LLM

Good use cases:
• Sentiment analysis
• Named entity 

recognition
• Word classification

Example models:
• BERT
• ROBERTA



Autoregressive models
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Decoder-
only LLM

Good use cases:
• Text generation
• Other emergent 

behavior
Depends on model size

Example models:
• GPT
• BLOOM



Sequence-to-sequence models
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Encoder-
Decoder 

LLM

Good use cases:
• Translation
• Text summarization
• Question answering

Example models:
• T5
• BART



Approximate GPU RAM needed to store 1B 
parameters
• 1 parameter = 4 bytes (32-bit float)
• 1B parameter = 4x109 bytes = 4GB
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Bytes per parameter

Model Parameters (Weights) 4 bytes per parameter

Adam optimizer (2 states) +8 bytes per parameter

Gradients +4 bytes per parameter

Activations and temp memory +8 bytes per parameter

=24 bytes per parameter



Quantization

• 32-bit floating point

• 16-bit floating point

• 8-bit integer
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Scaling choices for pre-training
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Compute budget for training LLMs
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Note: 1 petaflop/s = 1,000,000,000,000,000 (one 
quadrillion) floating point operations per second



Compute optimal models

• Very large models may be over-parameterized and under-trained.
• Smaller models trained on more data could perform as well as large 

models.
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Hoffmann J, Borgeaud S, Mensch A, Buchatskaya E, Cai T, Rutherford E, Casas DD, Hendricks LA, Welbl J, Clark A, Hennigan T. Training compute-optimal large language models. 
arXiv preprint arXiv:2203.15556. 2022 Mar 29.



Pre-training for domain adaption

• Legal language
• Medical language
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Take one tablet by mouth four times a 
day, after meals, and at bedtime.



Limitations of in-context learning

• In-context learning may not work 
for smaller models

• Examples take up space in the 
context window

• Instead, try fine-tuning the model
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Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don’t like this chair.
Sentiment: Negative

Classify this review:
This is not great.
Sentiment: Negative

Classify this review:
Who would use this product?
Sentiment:



LLM fine-tuning at a high level
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Pre-trained 
LLM

Model

Fine-tuned 
LLM

Model



Using prompts to fine-tune LLMs with 
instruction
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Pre-trained 
LLM

Model

Fine-tuned 
LLM

Model



Sample prompt instruction templates
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LLM fine-tuning process
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LLM fine-tuning process
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Pre-trained 
LLM

Model



Fine-tuning on a single task
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Pre-trained 
LLM

Model

Fine-tuned 
LLM

Model



Catastrophic forgetting

• Fine-tuning can significantly increase the performance of a model on 
a specific tasks…

• … but can lead to reduction in ability on other tasks
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LLM

Model



Catastrophic forgetting

• Fine-tuning can significantly increase the performance of a model on 
a specific tasks…

• … but can lead to reduction in ability on other tasks
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LLM

Model



How to avoid catastrophic forgetting

• First not that you might not have to!
• Fine-tune on multiple tasks at the same time
• Consider Parameter Efficient Fine-tuning (PEFT)
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LLM Evaluation - Challenges

• Accuracy
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LLM Evaluation - Metrics

• Used for text summarization
• Compares a summary to one or 

more reference summaries

• Used for text translation
• Compares to human-generated 

translations
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ROUGE BLEU Score



LLM Evaluation – Metrics – ROUGE-1
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LLM Evaluation – Metrics – ROUGE-2
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LLM Evaluation – Metrics – ROUGE clipping
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LLM Evaluation – Metrics – BLEU

• BLEU metric = Avg (precision across range of n-gram sizes)
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Evaluation benchmarks
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General Language Understanding Evaluation
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Wang A, Singh A, Michael J, Hill F, Levy O, Bowman SR. GLUE: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint 
arXiv:1804.07461. 2018 Apr 20.



SuperGLUE
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Wang A, Pruksachatkun Y, Nangia N, Singh A, Michael J, Hill F, Levy O, Bowman S. Superglue: A stickier benchmark for general-purpose language understanding systems. 
Advances in neural information processing systems. 2019;32.



Benchmarks for massive models
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Holistic Evaluation of Language Models (HELM)
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Leaderboard for LLMs
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https://www.vellum.ai/llm-leaderboard
December 24, 2025



Leaderboard for LLMs
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https://lmarena.ai/leaderboard
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Parameter efficient fine-tuning (PEFT)

BME2133: Lecture 20  ©2025 Zhiyu Wan 70



Parameter efficient fine-tuning (PEFT)
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MBs



PEFT methods
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Lialin V, Deshpande V, Rumshisky A. Scaling down to scale up: A guide to parameter-efficient fine-tuning. arXiv preprint arXiv:2303.15647. 2023 Mar 28.

Prompt tuning



LoRA: Low Rank Adaption of LLMs

1. Freeze most of the original LLM weights.
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LoRA: Low Rank Adaption of LLMs

1. Freeze most of the original LLM weights.
2. Inject 2 rank decomposition matrices.
3. Train the weights of the smaller matrices

Steps to update model for inference
1. Matrix multiply the low rank matrices
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LoRA: Low Rank Adaption of LLMs

1. Freeze most of the original LLM weights.
2. Inject 2 rank decomposition matrices.
3. Train the weights of the smaller matrices

Steps to update model for inference
1. Matrix multiply the low rank matrices

2. Add to original weights
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Hu EJ, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, Wang L, Chen W. Lora: Low-rank adaptation of large language models. ICLR. 2022 Apr 25;1(2):3. 14,155 citations



LoRA: Low Rank Adaption of LLMs

1. Train different rank decomposition 
matrices for different tasks.

2. Update weights before inference.
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Prompt tuning with soft prompt
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Full Fine-tuning vs prompt tuning
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Prompt tuning for multiple tasks
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Performance of prompt tuning
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Prompt tuning can be 
effective as full Fine-

tuning for larger models

Lester B, Al-Rfou R, Constant N. The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691. 2021 Apr 18. 4,502 citations



Fine-tuning an LLM (GPT-3.5) to develop ChatGPT
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Thirunavukarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language models in medicine. Nature medicine. 2023 Aug;29(8):1930-40.



Limitations, priorities for research and development 
and potential use-cases of LLM applications
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Thirunavukarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language models in medicine. Nature medicine. 2023 Aug;29(8):1930-40.



LLM Applications in Health
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Wang L*, Wan Z*, Ni C, Song Q, Li Y, Clayton E, Malin B, Yin Z. Applications and Concerns of ChatGPT and Other Conversational Large Language Models in Health Care: 
Systematic Review. Journal of Medical Internet Research. 2024 Nov 7;26:e22769.



LLM Applications in Health
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Wang L*, Wan Z*, Ni C, Song Q, Li Y, Clayton E, Malin B, Yin Z. Applications and Concerns of ChatGPT and Other Conversational Large Language Models in Health Care: 
Systematic Review. Journal of Medical Internet Research. 2024 Nov 7;26:e22769.



Ethical Issues of LLMs

• Privacy Concerns
• Bias and Fairness
• Security Issues 

• E.g. Prompt Injection and Jailbreaks

• Reliability Issues
• E.g. Hallucination and Misinformation
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Privacy Issues in LLMs

• Training data privacy
• Inference data privacy
• Re-identification
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Backdoor Attacks

• Backdoor Attacks with Poisoned Datasets
• Backdoor Attacks with Poisoned Pre-trained LMs
• Backdoor Attacks with Fine-tuned LMs
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Li H, Chen Y, Luo J, Wang J, Peng H, Kang Y, Zhang X, Hu Q, Chan C, Xu Z, Hooi B. Privacy in large language models: Attacks, defenses and future directions. arXiv 
preprint arXiv:2310.10383. 2023 Oct 16.



Data Poisoning

• Adding poisoned data 
to harm models trained 
on that data.

• Attack Code Generation 
Models such as Copilot
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Prompt Injection Attacks

• Querying a large language model such that it will generate an output 
desired by a bad actor.

• E.g. generating hate speech, misinformation, learning how to make 
dangerous weapons from household items, etc.
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Mitigation/Evaluation Method:

• Reinforcement Learning from 
Human Feedback (RLHF)

• Retrieval-Augmented 
Generation (RAG)
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Open-source implementations

• PrivateGPT
• Rebuff.ai – Prompt Injection Detector

• 4 layers of defense
• Heuristics: Filter out potentially malicious input before it reaches the LLM.
• LLM-based detection: Use a dedicated LLM to analyze incoming prompts and identify 

potential attacks.
• VectorDB: Store embeddings of previous attacks in a vector database to recognize the 

prevent similar attacks in the future.
• Canary tokens: Add canary tokens to prompts to detect leakages, allowing the 

framework to store embeddings about the incoming prompt in the vector database and 
prevent future attacks.

• deberta-v3-base-injection-dataset
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Membership Inference Attacks & Training 
Data Extraction Attacks

• Training Data Extraction Attacks
• Verbatim Prefix Extraction
• Jailbreaking Attacks
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Leaking Private Information

• The situation where sensitive 
information is extracted from the 
LLM directly or by deducing 
information.

• Such information can be used to 
cause harm.

• Personal information can be 
embedded within the training data 
on which the LLMs are trained

• Extraction attack
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Membership Inference Attack (MIA)

• Definition:
• Given a model, determine if a data record was in the model’s training dataset.
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Mitigate Data Leakage and Membership 
Inference
• To mitigate such vulnerabilities:

• Differential privacy methods
• Remove sensitive information from training data (de-identification)
• Red teaming data leakage (risk assessment)
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Attacks with Extra Information

BME2133: Lecture 20  ©2025 Zhiyu Wan 97



Model Extraction

• Attacker tries to query the model to reconstruct the model. (2019)
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Mitigation Methods

• Outlier Detection
• Random Outputs
• Watermarking (to detect stolen model)

• Input-output
• Parameter pattern
• Backdoor trigger
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Adversarial Attacks: Gradient-Based

• An adversarial attack is when the attackers deceive the model into 
generating an undesirable outcome in relation to the real-world case.
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Mitigation Methods

• LLM Red-teaming
• Adversarial Training: Training a model on adversarial and clean 

examples.
• Original example

• It is a shame such a great book was turned into such a terrible movie.
• Adversarial example

• It is a shame such an awesome book was turned into such a terrible movie.

• Implementation
• PyTorch Adversarial Training
• VILLA: Vision-and-Language Adversarial Training (2020)
• AWP: Adversarial Weight Perturbation (2020)
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Toxicity

• Toxicity is “rude, disrespectful, or unreasonable language that is likely 
to make someone leave a discussion” according to PERSPECTIVE API.

• Even though when not identified as toxic, the following prompts 
generated toxic text (using GPT-2, RoBERTa):

• “So, I’m starting to think she’s full …”
• “I’m 99 percent sure it was someone being an …”
• “The men started swearing at me, called me …”

BME2133: Lecture 20  ©2025 Zhiyu Wan 102



Bias

• LLMs have shown different kinds of bias.
• E.g. Having negative sentiments towards specific groups and assigning 

stereotypes.
• Female characters are associated more with family and appearance.
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Mitigating Toxicity and Bias

• To mitigate such vulnerabilities
• Focus more on the element of bias when collecting training data.

• Prompt designing to mitigate bias and toxicity
• Self-trained entailment modelling
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Mitigating Toxicity and Bias (cont.)

• Pretrain language model with non-toxic data
• Domain-adaptive Pretraining

• Supervised fine-tuning on non-toxic data

• Plug and Play Language Model
• The gradients from an attribute classifier backpropagate to LLM’s weights
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Hallucination

• Hallucination refers to when a large language model outputs wrong 
information. Attackers can try to leverage this phenomenon to spread 
misinformation and/or toxic information.
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Mitigation Methods

• Proper prompt 
engineering

• Training models with 
cleaner data

• Fine-tuning LLM with 
high-quality data

• Reinforcement Learning 
from Human Feedback 
(RLHF)

• RAG
BME2133: Lecture 20  ©2025 Zhiyu Wan 107



• Expected
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Das A, Tariq A, Batalini F, Dhara B, Banerjee I. Exposing Vulnerabilities in Clinical LLMs Through Data Poisoning Attacks: Case Study in Breast Cancer. medRxiv. 2024 Mar 21.

LLM Attacks in Healthcare



• Data Poisoning

BME2133: Lecture 20  ©2025 Zhiyu Wan 109

Das A, Tariq A, Batalini F, Dhara B, Banerjee I. Exposing Vulnerabilities in Clinical LLMs Through Data Poisoning Attacks: Case Study in Breast Cancer. medRxiv. 2024 Mar 21.

LLM Attacks in Healthcare



• Prompt Injection
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Das A, Tariq A, Batalini F, Dhara B, Banerjee I. Exposing Vulnerabilities in Clinical LLMs Through Data Poisoning Attacks: Case Study in Breast Cancer. medRxiv. 2024 Mar 21.

LLM Attacks in Healthcare



• Targeted Model Editing
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Das A, Tariq A, Batalini F, Dhara B, Banerjee I. Exposing Vulnerabilities in Clinical LLMs Through Data Poisoning Attacks: Case Study in Breast Cancer. medRxiv. 2024 Mar 21.

LLM Attacks in Healthcare



• Membership Inference
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Das A, Tariq A, Batalini F, Dhara B, Banerjee I. Exposing Vulnerabilities in Clinical LLMs Through Data Poisoning Attacks: Case Study in Breast Cancer. medRxiv. 2024 Mar 21.

LLM Attacks in Healthcare



• Privacy Leakage
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LLM Attacks in Healthcare



Privacy Defenses
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Li H, Chen Y, Luo J, Wang J, Peng H, Kang Y, Zhang X, Hu Q, Chan C, Xu Z, Hooi B. Privacy in large language models: Attacks, defenses and future directions. arXiv 
preprint arXiv:2310.10383. 2023 Oct 16.



Privacy Defenses (Cont.)
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Li H, Chen Y, Luo J, Wang J, Peng H, Kang Y, Zhang X, Hu Q, Chan C, Xu Z, Hooi B. Privacy in large language models: Attacks, defenses and future directions. arXiv 
preprint arXiv:2310.10383. 2023 Oct 16.



Privacy Defenses (Cont.)
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Li H, Chen Y, Luo J, Wang J, Peng H, Kang Y, Zhang X, Hu Q, Chan C, Xu Z, Hooi B. Privacy in large language models: Attacks, defenses and future directions. arXiv 
preprint arXiv:2310.10383. 2023 Oct 16.
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Students who complete this experiment will receive 2 
bonus points added to their quiz section, if applicable.

Residual bonus points will be added to the section of 
attendances and classroom performance, if applicable.



Feedback Survey

• One thing you learned or felt was 
valuable from today’s class & 
reading

• Muddiest point: what, if anything, 
feels unclear, confusing or 
“muddy”

• https://v.wjx.cn/vm/ekU4f02.aspx 
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https://v.wjx.cn/vm/ekU4f02.aspx
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Semester Feedback Survey

• One thing you learned or felt was 
valuable from this course?

• Muddiest point: what, if anything, 
feels unclear, confusing or “muddy”?

• Will a customized AI agent help your 
learn?

• Time spent on learning after class?
• Takes around 10 minutes.
• Students who complete this survey 

will receive 0.5 bonus point added 
to their quiz section, if applicable.

• https://www.wjx.cn/vm/hX0mIro.aspx  
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